[1]
|
Diaz, J., Jaramillo, N. and Murillo, M. (2007) Geometric Triangular Chiral Hexagon Crystal-Like Complexes Organization in Pathological Tissues Biological Collision Order. PLoS ONE, 2, e1282.
http://dx.doi.org/10.1371/journal.pone.0001282
|
[2]
|
Diaz, J. and Murillo, M. (2009) Framework of Collagen Type I Vasoactive Vessels Structuring Invariant Geometric At-tractor in Cancer Tissues: Insight into Biological Mag-netic fields. PLoS ONE, 4, e4506.
http://dx.doi.org/10.1371/journal.pone.0004506
|
[3]
|
Diaz, J., Murillo, M. and Barrero, A. (2011) Intercellular Cancer Collisions Generate an Ejected Crystal Comet Tail Effect with Fractal Interface Embryoid Body Reassembly Trans-formation. Cancer Management and Research, 3, 143-155.
|
[4]
|
Diaz, J. and Murillo, M. (2012) Phenotype Characterization of Embryoid Body Structures Generated by a Crystal Comet Effect Tail in an Intercellular Cancer Collision Scenario. Cancer Management and Research, 4, 9-21.
http://dx.doi.org/10.2147/CMAR.S25810
|
[5]
|
Diaz, J. (2013) Electromagnetic Field Released in Collision Impact Events Generate in the Matrix Interface Fractal Scalable Invariant Geometric Triangular Chiral Hexagonal Structures. Open Journal of Geology, 3, 187-200.
http://dx.doi.org/10.4236/ojg.2013.33022
|
[6]
|
Robbins, S.J. and Hynek, B.M. (2012) A New Global Database of Mars Impact Craters ≥1 km: 2. Global Crater Properties and Regional Variations of the Simple-to-Complex Transition. Journal of Geophysical Research: Planets, 117, E06001.
|
[7]
|
Masantis, L. (2005) Morphological, Structural and Lithological Records of Terrestrial Impacts: An Overview. Australian Journal of Earth Sciences, 52, 509-528. http://dx.doi.org/10.1080/081200 90500170427
|
[8]
|
Folco, L., Di Martino, M., El Barkooky, A., D’Orazio, M., et al. (2010) The Kamil Crater in Egypt. Science, 329, 804-807. http://dx.doi.org/10.1126/science.1190990
|
[9]
|
Diaz, J. (2013) Geometric Triangular Chiral Hexagon Complexes and Clonal Embryogenic Body Organization on the Turin Shroud Crucified Man Image: A Predictable Tissue Response to Injury. Natural Science, 5, 1102-1111.
http://dx.doi.org/10.4236/ns.2013.51013
|
[10]
|
Bystrova, K., et al. (2013) Spontaneous Synthesis of Carbon Nanowalls, Nanotubes and Nanotips Using High Flux Density Plasmas. Carbon, 68, 695-707. http://dx.doi.org/10.1016/j.carbon.2013. 11.051
|
[11]
|
A Crater as an Abode for Life. http://phys.org/news/2013-11-crater-abode-life.html
|
[12]
|
Paleontologist Presents Origin of Life Theory. http://phys.org/news/2013-10-paleontologist-life-theory.html
|
[13]
|
Kring, D.A. and Abramov, O. (2005) Impact-Generated Hydrothermal Systems: Potential Sites for Pre-biotic Chemistry and Life on Early Earth and Mars. NASA Astrobiology Conference, Boulder, Colorado, 2005.
|
[14]
|
O. Abramov and D.A. Kring (2005) Impact-Induced Hydrothermal Activity on Early Mars. Journal of Geophysical Research, 110, E12809. http://dx.doi.org/10.1029/2005JE002453
|
[15]
|
Schwenzer, S.P. and Kring, D.A. (2006) Impact-Generated Hydrothermal Systems Capable of Forming Phyllosilicates on Noachian Mars. Geology, 37, 1091-1094. http://dx.doi.org/10.1130/G30340A.1
|
[16]
|
Zurcher, L. and Kring, D.A. (2004) Post-Impact Hydrothermal Alteration in the Yaxcopoil-1 hole, Chicxulub Impact Structure, Mexico. Meteoritics and Planetary Science, 39, 1199-1221.
http://dx.doi.org/10.1111/j.1945-5100.2004.tb01137.x
|
[17]
|
Abramov, O. and Kring, D.A. (2007) Numerical Modeling of Impact-Induced Hydrothermal Activity at the Chicxulub Crater. Meteoritics and Planetary Science, 42, 93-112.
|