[1]
|
Song, M. and Shao, S.G. (2010) Exact Solitary Wave Solutions of the Generalized (2 + 1) Dimensional Boussinesq Equation. Applied Mathematics and Computation, 217, 3557-3563. http://dx.doi.org/10.1016/j.amc.2010.09.030
|
[2]
|
Chen, H.T. and Zhang, H.Q. (2004) New Double Periodic and Multiple Soliton Solutions of Thegeneralized (2 + 1)-Dimensional Boussinesq Equation. Chaos, Solitons & Fractals, 20, 765-769. http://dx.doi.org/10.1016/j.chaos.2003.08.006
|
[3]
|
Li, J.B. (2008) Bifurcation of Traveling Wave Solutions for Two Types Boussinesq Equations. Science China Press, 38, 1221-1234. http://dx.doi.org/10.1007/s11426-008-0129-x
|
[4]
|
Tang, S.Q., Xiao, Y.X. and Wang, Z.J. (2009) Travelling Wave Solutions for a Class of Nonlinear Fourth Order Variant of a Generalized Camassa-Holm equation. Applied Mathematics and Computation, 210, 39-47. http://dx.doi.org/10.1016/j.amc.2008.10.041
|
[5]
|
Rong, J.H., Tang, S.Q. and Huang, W.T. (2010) Bifurcation of Traveling Wave Solutions for a Class of Nonlinear Fourth Order Variant of a Generalized Camassa-Holm equation. Communications in Nonlinear Science and Numerical Simulation, 15, 3402-3417. http://dx.doi.org/10.1016/j.cnsns.2009.12.027
|
[6]
|
Tang, S.Q. and Huang, W.T. (2008) Bifurcations of Travelling Wave Solutions for the K(n,-n,2n) Equations. Applied Mathematics and Computation, 203, 39-49. http://dx.doi.org/10.1016/j.amc.2008.01.036
|
[7]
|
Li, J.B. and Liu, Z.R. (2002) Travelling Wave Solutions for a Class of Nonlinear Dispersive Equations. Chinese Annals of Mathematics, Series B, 23, 397-418. http://dx.doi.org/10.1142/S0252959902000365
|
[8]
|
Li, J.B. and Liu, Z.R. (2000) Smooth and Non-Smooth Travelling Waves in a Nonlinearly Dispersive Equation. Applied Mathematical Modelling, 25, 41-56. http://dx.doi.org/10.1016/S0307-904X(00)00031-7
|
[9]
|
Bibikov, Y.N. (1979) Local Theory of Nonlinear Analytic Ordinary Differential Equations. Lecture Notes in Mathematics, Vol. 702. Springer-Verlag, New York.
|
[10]
|
Wang, Z.J. and Tang. S.Q. (2009) Bifurcation of Travelling Wave Solutions for the Generalizedzk Equations. Communications in Nonlinear Science and Numerical Simulation, 14, 2018-2024. http://dx.doi.org/10.1016/j.cnsns.2008.06.026
|
[11]
|
Takahashi, M. (2003) Bifurcations of Ordinary Differential Equations of Clairaut Type. Journal of Differential Equations, 19, 579-599. http://dx.doi.org/10.1016/S0022-0396(02)00198-5
|