Feynman Perturbation Series for the Morse Potential

DOI: 10.4236/jmp.2014.55028   PDF   HTML   XML   3,705 Downloads   5,489 Views  


In this paper we give an alternative treatment of the Schrodinger equation with the Morse potential, which based on the exact summation of the Feynman perturbation series in its original form. Using Fourier transform we establish a recurrence equation between terms of the perturbation series. Finally, by the inverse Fourier transform and some technical tools of the ordinary differential equations of the second order, we can compute the exact sum of the perturbation series which is the Green’s function of the problem.

Share and Cite:

Badredine, B. , Tayeb, M. and Lyazid, C. (2014) Feynman Perturbation Series for the Morse Potential. Journal of Modern Physics, 5, 177-185. doi: 10.4236/jmp.2014.55028.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Feynman, R.P. and Hibbs, A.R. (1965) Quantum Mechanics and Path-Integral. McGraw-Hill, New York.
[2] Goovaerts, M.J., Babcenco, A. and Devreese, J.T. (1973) Journal of Mathematical Physics, 14, 554.
[3] Lawande, S.V. and Bhagwat, K.V. (1988) Physics Letters A, 131, 8-10.
[4] Grosche, C. (1990) Journal of Physics A: Mathematical and General, 23, 5205-5234.
[5] Bhagwat, K.V. and Lawande, S.V. (1989) Physics Letters A, 135, 417.
[6] Lin, D.H. (1997) Journal of Physics A: Mathematical and General, 30, 4365.
[7] Lin, D.H. (1998) Journal of Physics A: Mathematical and General, 31, 7577.
[8] Bhagwat, K.V. and Lawande, S.V. (1989) Physics Letters A, 141, 321.
[9] Acila, M., Benali, B. and Meftah, M.T. (2006) Journal of Physics A: Mathematical and General, 39, 1357-1366.
[10] Landau, L. and Lifchitz, E. (1974) Quantum Mechanics. Vol. III, Edition Mir, Moscou.
[11] Khandekar, D.C. and Lawande, S.V. (1986) Physics Reports (Review Section of Physics Letters), 137, 115-229.
[12] Duru, I.H. (1983) Physical Review D, 28, 2689-2692. http://dx.doi.org/10.1103/PhysRevD.28.2689
[13] Fischer, W., Leschke, H. and Muller, P. (1992) Journal of Physics A: Mathematical and General, 25, 3835-3853.
[14] Soylu, A., Bayrak, O. and Boztosun, I. (2012) Central European Journal of Physics, 10, 953-959.
[15] Barakat, T., Abodayeh, K. and Al-dossary, O.M. (2006) Czechoslovak Journal of Physics, 56, 583-590.
[16] Addis, B. and Schachinger, W. (2010) Computational Optimization and Applications, 47, 129-131.
[17] Popov, V.N. (2013) High Temperature, 51, 66-71. http://dx.doi.org/10.1134/S0018151X13010124
[18] Foldi, P., Benedict, M.G. and Czéryak, A. (2004) Acta Physica Hungarica Series B, Quantum Electronics, 20, 25-28.
[19] Boudjedaa, B., Meftah, M.T. and Chetouani, L. (2007) Turkish Journal of Physics, 31, 197-203.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.