Predictive Analysis of Microarray Data


Microarray gene expression data are analyzed by means of a Bayesian nonparametric model, with emphasis on prediction of future observables, yielding a method for selection of differentially expressed genes and the corresponding classifier.

Share and Cite:

Marques F., P. and B. Pereira, C. (2014) Predictive Analysis of Microarray Data. Open Journal of Genetics, 4, 63-68. doi: 10.4236/ojgen.2014.41009.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Friend, S.H. and Stoughton, R.B. (2002) The Magic of Microarrays. Scientific American, 286, 34-41.
[2] De Finetti, B. (1974) Theory of Probability (Two Volumes). John Wiley & Sons, Hoboken.
[3] GEO Dataset GDS3713.
[4] Pan, F., Yang, T.L., Chen, X.D., Chen, Y., Gao, G., Liu, Y.Z., Pei, Y.F., Sha, B.Y., Jiang, Y., Xu, C., Recker, R.R. and Deng, H.W. (2010) Impact of Female Cigarette Smoking on Circulating B Cells in Vivo: The Suppressed ICOSLG, TCF3, and VCAM1 Gene Functional Network May Inhibit Normal Cell Function. Immunogenetics, 62, 237-251.
[5] Wall, L., Christiansen, T. and Orwant, J. (2000) Programming Perl. 3rd Edition, O’Reilly Media, Sebastopol.
[6] Ferguson, T. (1972) A Bayesian Analysis of Some Nonparametric Problems. The Annals of Statistics, 1, 209-230.
[7] Schervish, M.J. (1997) Theory of Statistics. Springer-Verlag, Berlin.

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.