Application of Hartree-Fock Method for Modeling of Bioactive Molecules Using SAR and QSPR
Cleydson B. R. Santos, Cleison C. Lobato, Francinaldo S. Braga, Sílvia S. S. Morais, Cesar F. Santos, Caio P. Fernandes, Davi S. B. Brasil, Lorane I. S. Hage-Melim, Williams J. C. Macêdo, José C. T. Carvalho
Laboratory of Modeling and Computational Chemistry, Federal University of Amapá, Macapá, Brazil.
Laboratory of Modeling and Computational Chemistry, Federal University of Amapá, Macapá, Brazil; Laboratory of Drug Research, School of Pharmaceutical Sciences, Federal University of Amapá, Macapá, Brazil.
Laboratory of Modeling and Computational Chemistry, Federal University of Amapá, Macapá, Brazil;Institute of Technology, Federal University of Pará, Belém, Brazil.
Laboratory of Modeling and Computational Chemistry, Federal University of Amapá, Macapá, Brazil;Postgraduate Program in Biotechnology and Biodiversity-Network BIONORTE, Campus Universitário Marco Zero, Macapá, Brazil.
Laboratory of Modeling and Computational Chemistry, Federal University of Amapá, Macapá, Brazil;Postgraduate Program in Biotechnology and Biodiversity-Network BIONORTE, Campus Universitário Marco Zero, Macapá, Brazil; Laboratory of Drug Research, School of Pharmaceutical Sciences, Federal University of Amapá, Macapá, Brazil.
Laboratory of Modeling and Computational Chemistry, Federal University of Amapá, Macapá, Brazil;Postgraduate Program in Biotechnology and Biodiversity-Network BIONORTE, Campus Universitário Marco Zero, Macapá, Brazil;Laboratory of Drug Research, School of Pharmaceutical Sciences, Federal University of Amapá, Macapá, Brazil.
Laboratory of Statistical and Computational Modeling, University of the State of Amapá, Macapá, Brazil.
DOI: 10.4236/cmb.2014.41001   PDF   HTML     8,530 Downloads   19,525 Views   Citations


The central importance of quantum chemistry is to obtain solutions of the Schr?dinger equation for the accurate determination of the properties of atomic and molecular systems that occurred from the calculation of wave functions accurate for many diatomic and polyatomic molecules, using Self Consistent Field method (SCF). The application of quantum chemical methods in the study and planning of bioactive compounds has become a common practice nowadays. From the point of view of planning it is important to note, when it comes to the use of molecular modeling, a collective term that refers to methods and theoretical modeling and computational techniques to mimic the behavior of molecules, not intend to reach a bioactive molecule simply through the use of computer programs. The choice of method for energy minimization depends on factors related to the size of the molecule, parameters of availability, stored data and computational resources. Molecular models generated by the computer are the result of mathematical equations that estimate the positions and properties of the electrons and nuclei, the calculations exploit experimentally, the characteristics of a structure, providing a new perspective on the molecule. In this work we show that studies of Highest Occupied Molecular Orbital Energy (HOMO), Low Unoccupied Molecular Orbital Energy (LUMO) and Map of molecular electrostatic potential (MEP) using Hatree-Fock method with different basis sets (HF/3-21G*, HF/3-21G**, HF/6-31G, HF/6-31G*, HF/6-31G** and HF/6-311G), that are of great importance in modern chemistry, biochemistry, molecular biology, and other fields of knowledge of health sciences. In order to obtain a significant correlation, it is essential that the descriptors are used appropriately. Thus, the quantum chemical calculations are an attractive source of new molecular descriptors that can, in principle, express all the geometrical and electronic properties of molecules and their interactions with biological receptor.

Share and Cite:

Santos, C. , Lobato, C. , Braga, F. , Morais, S. , Santos, C. , Fernandes, C. , Brasil, D. , Hage-Melim, L. , Macêdo, W. and Carvalho, J. (2014) Application of Hartree-Fock Method for Modeling of Bioactive Molecules Using SAR and QSPR. Computational Molecular Bioscience, 4, 1-24. doi: 10.4236/cmb.2014.41001.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Luna, J.S., Santos, A.F., Lima, M.R.F., Omena, M.C., Mendonça, F.A.C., Bieber, L.W. and Sant’Ana, A.E.G. (2005) A Study of the Larvicidal and Molluscicidal Activities of Some Medicinal Plants from Northeast Brazil. Journal of Ethnopharmacology, 97, 199-206.
[2] Amarante, C.B., Müller, A.H., Póvoa, M.M. and Dolabela, M.F. (2011) Estudo Fitoquímico Biomonitorado Pelos Ensaios de Toxicidade Frente à Artemia Salina e de Atividade Antiplasmódica do Caule de Aninga (Montrichardia linifera). Acta Amazônica, 41, 431-434.
[3] Robards, K., Prenzler, P.D., Tucker, G., Swatsitang, P. and Glover, W. (2003) Phenolic Compounds and Their Role in Oxidative Processes in Fruits. Food Chemistry, 66, 401-436.
[4] Moure, A., Cruz, J., Franco, D., Dominguez, J., Sineiro, J., Dominguez, H., Nnunez, M. and Parajó, J. (2001) Natural Antioxidants from Residual Sources. Food Chemistry, 72, 145-171.
[5] Huang, D., Ou, B. and Prior, R.L. (2005) The Chemistry behind Antioxidant Capacity Assays. Journal of Agricultural and Food Chemistry, 53, 1841-1856.
[6] Zibadi, S., Farid, R., Moriguchi, S., Lu, Y., Foo, L., Tehrani, P., Lreich, J. and Watson, R. (2007) Oral Administration of Purple Passion Fruit Peel Extract Attenuates Blood Pressure in Female Spontaneously Hypertensive Rats and Humans. Nutrition Research, 27, 408-416.
[7] Sun, J., Chu, Y.F., Wu, X. and Liu, R.H. (2002) Antioxidant and Antiproliferative Activities of Common Fruits. Journal of Agricultural and Food Chemistry, 50, 7449-7454.
[8] Amarante, C.B., Silva, J.C.F., Solano, F.A.R., Nascimento, L.D., Moraes, L.G., Silva, G.F. and Uno, W.S. (2009) Spectrometric Study of the Leaves of Aninga (Montrichardia linifera) Collected from the Guama River, Campus of UFPA, Belém-PA. A Contribution to the Chemical Study of the Araceae Family. Revista Científica da UFPA, 7, 1-19.
[9] D’Oliveira, H.V. (1854) System of Brazilian Vegetable Materia Medica. Casa de Eduardo & Henrique Laemmert, Rio de Janeiro.
[10] Moreira, N.J. (1862) Dictionary of Brazilian Medicinal Plants. Typographia do Correio Mercantil, Rio de Janeiro.
[11] Catsro, J.M. (1878) Purgatives Brazil’s Indigenous. Faculdade de Medicina do Rio de Janeiro.
[12] Fenner, R., Betti, A.H., Mentz, L.A. and Rates, S.M.K. (2006) Plantas Utilizadas na Medicina Popular Brasileira com Potencial Atividade Antifúngica. Revista Brasileira de Ciências Farmacêuticas, 42, 369-394.
[13] Moo-Puc, R., Robledo, D. and Freile-Pelegrin, Y. (2008) Evaluation of Selected Tropical Seaweeds for in Vitro Anti-Trichomonal Activity. Journal of Ethnopharmacology, 120, 92-97.
[14] Osorio, D.E.J., Montoya, P.G.L. and Arango, A.G.J. (2006) Alkaloidal Natural Products with Antiprotozoal Activity. Vitae, 13, 61-84.
[15] Vikas, D.K., Vishweshwar, R. and Lakshmi, N.M. (2000) Current Status of Artemisinin and Its Derivatives as Anti- malarial Drugs. Life Science, 66, 279-300.
[16] Amarante, C.B., Silva, J.C.F., Müller, R.C.S. and Müller, A.H. (2011) Avaliação da Composição Mineral Do Chá da Folha Senescente de Montrichardia linifera (Arruda) Schott (Araceae) por Espectrometria de Absorção Atômica com Chama (FAAS). Química Nova, 34, 419-423.
[17] Meshnick, S.R., Jefford, C.W., Posner, G.H., Avery, M.A. and Peters, W. (1996) Second-Generation Antimalarial Endoperoxides. Parasitology Today, 12, 79-82.
[18] Klayman, D.L. (1985) Qinghaosu (Artemisinin): An Antima-Larial Drug from China. Science, 228, 1049-1055.
[19] Pinheiro, J.C., Ferreira, M.M.C. and Romero, O.A.S. (2001) Antimalarial Activity of Dihydroartemisinin Derivatives against P. falciparum Resistant to Mefloquine: A Quantum Chemical and Multivariate Study. Journal of Molecular Structure: THEOCHEM, 572, 35-44.
[20] Pinheiro, J.C., Kiralj, R., Ferreira, M.M.C. and Romero, O.A.S. (2003) Artemisinin Derivatives with Antimalarial Activity against Plasmodium falciparum Designed with the Aid of Quantum Chemical and Partial Least Squares Methods. QSAR & Combinatorial Science, 22, 830-842.
[21] Cardoso, F.J.B., Figueiredo, A.F., Lobato, M.S., Miranda, R.M., Almeida, R.C.O. and Pinheiro, J.C. (2008) A Study on Antimalarial Artemisinin Derivatives Using MEP Maps and Multivariate QSAR. Journal of Molecular Modeling, 14, 39-48.
[22] Atkins, P. and Jones, L. (2002) Chemical Principles: The Quest for Insight. Freeman, New York.
[23] ACD/Chemsketch Freware, version 12.00. (2010) Advanced Chemistry Development, Inc, Toronto.
[24] Flukiger, P. (2002) Molekel 4.2. Swiss Center for Scientific Computing, Mano.
[25] Dyer, J.R. (1965) Applications of Absorption Spectroscopy of Organic Compounds. Prentice-Hall, New Jersey.
[26] Silverstein, R.M., Webster, F.X. and Kiemle, D. (2005) Spectrometric Identification of Organics Compounds. Jhon Wiley & Sons, New Jersey.
[27] Bunge, A.V. (1979) Introdução a Química Quantica. Edgard Blücher, São Paulo.
[28] Souza, A.A. and Farias, R.F. (2007) Elementos de Química Quantica. Átomo, Campinas.
[29] Sant’Anna, C.M.R. (2009) Métodos de Modelagem Molecular Para Estudo e Planejamento de Compostos Bioativos: Uma Introdução. Revista Virtual de Química, 1, 49-57.
[30] Barreiro, E.J. and. Fraga, C.A.M. (2001) Química Medicinal, as Bases Moleculares da Ação dos Fármacos. Artmed, Porto Alegre.
[31] Nye, M.J. (2007) Working Tools for Theoretical Chemistry: Polanyi, Eyring, and Debates over the “Semiempirical Method”. Journal of Computational Chemistry, 28, 98-108.
[32] James, H.M. and Coolidge, A.S. (1933) The Ground State of the Hydrogen Molecule. The Journal of Chemical Physics, 1, 825.
[33] Marcus, R.A. (1964) Generalization of the Activated Complex Theory of Reaction Rates. I. Quantum Mechanical Treatment. The Journal of Chemical Physics, 41, 2614-2623.
[34] Hirschfelder, J.O. (1941) Semi-Empirical Calculations of Activation Energies. The Journal of Chemical Physics, 9, 645.
[35] Mielke, S.L., Peterson, K.A., Schwenke, D.W., Garrett, B.C., Truhlar, D.G., Michael, J.V., Su, M.C. and Sutherland, J.W. (2003) H+H2 Thermal Reaction: A Convergence of Theory and Experiment. Physical Review Letters, 91, 63201-63204.
[36] Atkinson, R.C. and Suppes, P. (1968) Program in Computer-Assisted Intruction: Final Report. In: Simonson, M.R. and Thompson, A., Eds., Educational Computing Foundations, Prentice Hall, Upper Saddle River.
[37] Nye, M.J. (2000) Instruments and Experimentation in the History of Chemistry. MIT Press, Cambridge.
[38] Morgon, N.H. and Coutinho, K. (2007) Métodos de Química Teórica e Modelagem Molecular. Livraria da Física, São Paulo.
[39] Hartree, D.R. (1928) The Wave Mechanics of an Atom with a Non-Coulomb Central Field. Part I. Theory and Methods. Mathematical Proceedings of the Cambridge Philosophical Society, 24, 89-110.
[40] Mulliken, R.S. (1932) Electronic Structures of Polyatomic Molecules and Valence. II. General Considerations. Physical Review, 41, 49-71.
[41] Blinder, S.M. (1965) Basic Concepts of Self-Consistent-Field Theory. American Journal of Physics, 33, 431-520.
[42] Levine, I.N. (1991) Quantum Chemistry. Prentice-Hall, New York.
[43] Roothaan, C.C.J. (1951) New Developments in Molecular Orbital Theory. Reviews of Modern Physics, 23, 69-89.
[44] Clementi, E. and Raimondi, D.L. (1963) Atomic Screening Constants from SCF Functions. The Journal of Chemical Physics, 38, 2686-2689.
[45] Clementi, E., Raimondi, D.L. and Reinhardt, W.P. (1967) Constantes Triagem Atômicas de SCF Funções. II. átomos com 37-86 Elétrons. The Journal of Chemical Physics, 47, 1300-1307.
[46] Hoffmann, R., (1963) An Extended Huckel Theory. I. Hydrocarbons. The Journal of Chemical Physics, 39, 1397-1412.
[47] Pople, J.A. and Beveridge, D.L. (1970) Aproximate Molecular Orbital Theory. McGraw-Hill, New York.
[48] Boys, S.F. (1950) Electronic Wave Functions. I. A General Method of Calculation for the Stationary States of Any Molecular System. Proceedings of the Royal Society A, 200, 542-554.
[49] Shavitt, I. (1963) The Gaussian Function in Calculations of Statistical Mechanics and Quantum Mechanics. In: Alder, B., Fernbach, S. and Rotenberg, M., Eds., Methods in Computational Physics, Academic Press, New York, 1-45.
[50] Hehre, W.J., Stewart, R.F. and Pople, J.A. (1969) Self-Consistent Molecular-Orbital Methods. I. Use of Gaussian Expansions of Slater-Type Atomic Orbitals. The Journal of Chemical Physics, 51, 2657-2664.
[51] Stewart, R.F. (1969) Small Gaussian Expansions of Atomic Orbitals. The Journal of Chemical Physics, 50, 2485-2495.
[52] Mulliken, R.S. and Liu, B. (1971) Self-Consistent-Field Wave Functions of P2 and PO, and the Role of d Functions in Chemical Bonding and of s-p Hybridization in N2 and P2. Journal of the American Chemical Society, 93, 6738-6744.
[53] Hehre, W. (1986) Ab Initio Molecular Orbital Theory. John Wiley & Sons, New York, 678-682.
[54] Santos, C.B.R., Lobato, C.C., Vieira, J.B., Brasil, D.S.B., Brito, A.U., Macêdo, W.J.C., Carvalho, J.C.T. and Pinheiro, J.C. (2013) Evaluation of Quantum Chemical Methods and Basis Sets Applied in the Molecular Modeling of Artemisinin. Computational Molecular Bioscience, 3, 66-79.
[55] Stewart, J.J.P. (1999) MOPAC2002. Fujitsu Limited, Tokyo.
[56] Clark, T. (2002) VAMP, Computer Cahemie Centrum. Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsba-chstra Be 25, D-91052, Erlangen.
[57] Thiel, W. (1998) MNDO97. Organisch-Chemisches Institut, Universitaet Zuerich, Winterthurerstrasse 190, CH-8057, Zuerich.
[58] Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Zakrzewski, V.G., Montgomery Jr., J.A., Stratmann, R.E., Burant, J.C., Dapprich, S., Millam, J.M., Daniels, A.D., Kudin, K.N., Strain, M.C., Frakas, O., Tomasi, J., Barone, V., Cossi, M., Cammi, R., Mennucci, B., Pomelli, C., Adamo, C., Clifford, S., Ochterski, J., Pettersson, G.A., Ayala, P.Y., Cui, Q., Morokuma, K., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Cioslowski, J., Ortiz, J.V., Baboul, A.G., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Gomperts, R., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Gonzalez, C., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Andres, J.L., Gonzalez, C., Head-Gordon, M., Replogle, E.S. and Pople, J.A. (1998) Gaussian 98, Revision A. 7, Gaussian, Inc., Pittsburgh.
[59] SPARTAN, Wavefunction, Inc., 18401, Von Karman Avenue, Suite 370, Irvine CA 92612 USA.
[60] Gordon, M., GAMESS, Gilman Hall, Iowa State University (Ames).
[61] CambridgeSoft Corporation (1999) Chem3D. Cambridge.
[62] Ostlund, N. (1993) HyperChem. Hypercube Inc., Gainesville
[63] Zerner, M.C. (1998) ZINDO Manual. QTP, University Of Florida, Gainesville, 32611-38435.
[64] Ranaldi, D., Hoggan, P.E., Cartier, A., Baka, K., Mornard, G., Thery, V., Loos, M., Mokrane, A. and Dillet, V. (2003) GEOMOS Manual. Laboratorie de Chimie Théorique, Université de Nancy I, Nancy.
[65] Rocha, G.B., Freire, R.O., da Costa Jr., N.B., de Sá, G.F. and Simas, A.M. (2004) Sparkle Model for AM1 Calculation of Lanthanide Complexes: Improved Parameters for Europium. Inorganic Chemistry, 43, 2346-2354.
[66] Young, D.C. (2001) Computational Chemistry—A Practical Guide for Applying Techniques to Real-World Problems. Cytoclonal Pharmaceutics Inc., John Wiley & Sons, Inc., New York.
[67] Stewart, J.J.P. (2007) MOPAC2007, Stewart Computational Chemistry EUA.
[68] Cambridge Soft Corporation (1998) CS ChemDraw 5.0, Chemical Strutucture Drawing Standard. Cambridge.
[69] Cambridge Soft Corporation (1998) CS Chem3D 5.0, Molecular Modeling and Analysis. Cambridge.
[70] Carvalho, I., Pupo, M.T., Borges, A.D.L. and Bernardes, L.S.C. (2003) Introdução A Modelagem Molecular de Fármacos no Curso Experimental de Química Farmacêutica. Quimica Nova, 26, 428-438.
[71] ChemSW®, Inc., (2001) Molecular Modeling ProTM4.0, Computational Chemistry Program. ChemSW®, Inc., Fairfield.
[72] ChemSW® Inc., (2001) ChemSite: Interative 3D Molecular Modeling. ChemSW®, Inc., Fairfield.
[73] Chemplus, Modular Extensions for HyperChem Release 6.02, Molecular Modeling for Windows. (2000) HyperClub, Inc, Gainesville.
[74] Patrick, G.L. (2001) An Introduction to Medicinal Chemistry. Oxford University Press, Oxford.
[75] Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery Jr., J.A., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C. and Pople, J.A. (2004) Gaussian 03, Revision C.02. Gaussian, Inc., Wallingford.
[76] Johnson, M. and Maggiora, G. (1990) Concepts and Applications of Molecular Similarity. John Wiley & Sons, New York.
[77] Leach, A. (2001) Molecular Modelling: Principles and Applications. Prentice Hall, Englewood Cliffs.
[78] Martin, Y. (2010) Quantitative Drug Design: A Critical Introduction. 2nd Edition, CRC Press, Boca Raton.
[79] Todeschini, R. and Gramatica, P. (1997) WHIM-3D 3.3. Milano.
[80] Todeschini, R. and Gramatica, P. (1998) New 3D Molecular Descriptors: The WHIM and QSAR Applications. Perspectives in Drug Discovery and Design, 9-11, 355-380.
[81] Guha, R. (2012) Exploring Structure-Activity Data Using the Landscape Paradigm. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2, 829-841.
[82] Ferreira, J.E.V., Figueiredo, A.F., Barbosa, J.P., Cristino, M.G.G., Macêdo, W.J.C., Silva, O.P.P., Malheiros, B.V., Serra, R.T.A. and Pinheiro, J.C. (2010) A Study of New Antimalarial Artemisinins through Molecular Modeling and Multivariate Analysis. Journal of the Serbian Chemical Society, 75, 1533-1548.
[83] Santos, C.B.R., Vieira, J.B., Lobato, C.C., Hage-Melim, L.I.S., Souto, R.N.P., Lima, C.S., Costa, E.V.M., Brasil, D.S.B., Macêdo, W.J.C. and Carvalho, J.C.T. (2014) A SAR and QSAR Study of New Artemisinin Compounds with Antimalarial Activity. Molecules, 19, 367-399.
[84] Flower, R. (2003) What Are All the Things that Aspirin Does? British Medical Journal, 327, 572-573.
[85] Fraga, C.A.M. (2001) Razões da Atividade Biológica: Interações Micro-e Biomacromoléculas. Química Nova na Escola, São Paulo-SP, 33-42.
[86] Santos, C.B.R., Lobato, C.C., Sousa, M.A.C., Macêdo, W.J.C. and Carvalho, J.C.T. (2014) Molecular Modeling: Origin, Fundamental Concepts and Applications Using Structure-Activity Relationship and Quantitative Structure-Activity Relationship. Reviews in Theoretical Science, 2, 91-115.
[87] Politzer, P. and Murray, J.S. (2002) The Fundamental Nature and Role of the Electrostatic Potential in Atoms and Molecules. Theoretical Chemistry Accounts, 108, 134-142.
[88] Bernardinelli, G., Jefford, C.W., Maric, D., Thomson, C. and Weber, J. (1994) Computational Studies of the Structures and Molecules. International Journal Quantum Chemistry, 52, 117-131.
[89] Murray, J.S. and Politzer, P. (2011) The Electrostatic Potential: An Overview. Wiley Interdisciplinary Reviews: Computional Molecular Science, 1, 153-163.
[90] Galabov, B., Ilieva, S., Koleva, G., Allen, W.D., Schaefer III, H.F. and Schleyer, P.V.R. (2013) Structure-Reactivity Relationships for Aromatic Molecules: Electrostatic Potentials at Nuclei and Electrophile Affinity Indices. Wiley Interdisciplinary Reviews: Computational Molecular Science, 3, 37-55.
[91] Martins, G.R., Napolitano, H.B., Camargo, L.T.F.M. and Camargo, A.J. (2012) Structure-Activity Relationship Study of Rutaecarpine Analogous Active against Central Nervous System Cancer. Journal of the Brazilian Chemical Society, 23, 2183-2190.
[92] Honório, K.M. and Silva, A.B.F. (2003) An AM1 Study on the Electron-Donating and Electron-Accepting Character of Biomolecules. International Journal of Quantum Chemistry, 95, 126-132.
[93] Hirao, H. (2011) Correlation Diagram Approach as a Tool for Interpreting Chemistry: An Introductory Overview. Wiley Interdisciplinary Reviews: Computational Molecular Science, 1, 337-349.
[94] Grant, G.H. and Richards, W.G. (1996) Computational Chemistry. Oxford Science Publications, Oxford.
[95] Contreras, R., Domingo, L.R., Andrés, J., Pérez, P. and Tapia, O. (1999) Nonlocal (Pair Site) Reactivity from Second-Order Static Density Response Function: Gas- and Solution-Phase Reactivity of the Acetaldehyde Enolate as a Test Case. The Journal of Physical Chemistry A, 103, 1291-1436.
[96] Clare, B.W. (1995) The Relationship of Charge Transfer Complexes to Frontier Orbital Energies in QSAR. Journal of Molecular Structure: Theochem, 331, 63-78.
[97] Clare, B.W. (1995) Charge Transfer Complexes and Frontier Orbital Energies in QSAR: A Congeneric Series of Electron Acceptors. Journal of Molecular Structure: Theochem, 337, 139-150.
[98] Clare, B.W. (1994) Frontier Orbital Energies in Quantitative Structure-Activity Relationships: A Comparison of Quantum Chemical Methods. Theoretical Chemistry Accounts, 87, 415-430.
[99] Heaton, C.A., Miller, A.K. and Powell, R.L. (2001) Predicting the Reactivity of Fluorinated Compounds with Copper Using Semi-Empirical Calculations. Journal of Fluorine Chemistry, 107, 1-3.
[100] Zhang, G. and Musgrave, C.B. (2007) Comparison of DFT Methods for Molecular Orbital Eigenvalue Calculations. The Journal of Physical Chemistry, 111, 1554-1561.
[101] Comelli, N.C., Duchowicz, P.R., Lobayan, R.M., Jubert, A.H. and Castro, E.A. (2012) QSPR Study of Valproic Acid and Its Functionalized Derivates. Molecular Informatics, 31, 181-188.
[102] Tropsha, A. (2010) Best Practices for Qsar Model Development, Validation and Exploitation. Molecular Informatics, 29, 476-488.
[103] Barbosa, J.P., Ferreira, J.E.V., Figueiredo, A.F., Almeida, R.C.O., Silva, O.P.P., Carvalho, J.R.C., Cristino, M.G.G., Pinheiro, J.C., Vieira, J.L.F. and Serra, R.T.A. (2011) Molecular Modeling and Chemometric Study of Anticancer Derivatives of Artemisinin. Journal of the Serbian Chemical Society, 76, 1263-1282.
[104] STATISTICA (Data Analysis Software System). (2004) Version 6.1. StatSoft, Inc., Tulsa.
[105] Snedecor, G.W. and Cochran, W.G. (1967) Statistical Methods. Oxford and IBH, New Delhi, 381-418.
[106] Chatterjee, S., Hadi, A.S. and Price, B. (2000) Regression Analysis by Examples. 3rd Edition, Wiley VCH, New York.
[107] Diudea, M.V. (2000) QSPR/QSAR Studies for Molecular Descriptors. Nova Science, Huntingdon, New York.
[108] Debnath, B., Gayen, S., Bhattacharya, S., Samanta, S. and Jha, T. (2003) QSAR Study on Some Pyrodoacridine Ascididemin Analogues as Anti-Tumor Agents. Bioorganic & Medicinal Chemistry, 11, 5493-5499.
[109] Santos, C.B.R., Vieira, J.B., Formigosa, A.S., Costa, E.V.M., Pinheiro, M.T., Silva, J.O., Macêdo, W.J.C. and Carvalho, J.C.T. (2014) Validation of Computational Methods Applied in Molecular Modeling of Artemisinin with Antimalarial Activity. Journal of Computational and Theoretical Nanoscience, 11, 1-9.
[110] Jacob, J.N. and Tazawa, M.J. (2012) Glucose-Aspirin: Synthesis and in Vitro Anti-Cancer Activity Studies. Bioorganic & Medicinal Chemistry Letters, 22, 3168-3171.

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.