Stability of Collinear Points in the Generalized Photogravitational Robes Restricted Three-Body Problem
AbdulRazaq AbdulRaheem
.
DOI: 10.4236/ijaa.2011.11002   PDF   HTML     3,436 Downloads   8,472 Views   Citations

Abstract

In studying the effects of radiation and oblateness of the primaries on the stability of collinear equilibrium points in the Robes restricted three-body problem we observed the variations of the density parameter k with the mass parameter μ for constant radiation and oblateness factors on the location and stability of the collin-ear points L1, L2and L3. It is also discovered that the collinear points are unstable for k > 0 and stable for k < 0.

Share and Cite:

A. AbdulRaheem, "Stability of Collinear Points in the Generalized Photogravitational Robes Restricted Three-Body Problem," International Journal of Astronomy and Astrophysics, Vol. 1 No. 1, 2011, pp. 6-9. doi: 10.4236/ijaa.2011.11002.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] A. AbdulRaheem and Singh, “Combined Effects of Perturba-tions, Radiation and Oblateness on the Stability of Equilibrium points in the Restricted Three-Body Problem,” Astronomical Journal, Vol. 131, No. 3, 2006, pp. 1880-1885.
[2] R. K. Sharma, Z. A. Taqvi and K. B. Bhatnagar, Celest. Mech. and Dyn. Astr., Vol. 79, 2001, pp. 119-133.
[3] J. Singh, Indian J. of Pure and Appl. Math., Vol. 34, No. 2, 2003, pp. 335-345.
[4] S. K. Shaoo and B. Ishwar, Bull. of Astr. Society. of India, Vol. 28, 2000, pp. 579-586.
[5] B. Ishwar and A. Elipe, As-trophysics and Space Science, Vol. 277, 2001, pp. 437-446.
[6] A. L. Kunisyn, Jour. of Appl. Math. and Mech., Vol. 64, No. 5, 2000, pp. 757-763.
[7] A. L. Kunisyn, Jour. of Appl. Math. and Mech., Vol. 65, No. 4, 2001, pp. 703-706.
[8] D. V. Schuerman, Astronomical Journal, Vol. 238, 1980, pp. 337-342.
[9] V. V. Szebehely, Astronomical Journal, Vol. 72, No. 1, 1967, pp. 7-9.
[10] H. A. G. Robe, Celestial Mechanics, Vol. 16, 1977, pp. 345-351.
[11] A. K. Shrivastava and D. Garain, Celest.and Mech. Dyn. Astr., Vol. 51, 1991, pp. 67-73.
[12] C. M. Giordano, A. R. Plastino and A. Plastino, Celest. Mech. and Dyn. Astr., Vol. 66, 1997, pp. 229-242.
[13] P. P. Hallan and N. Rana, Celest . Mech.and Dyn. Astr., Vol. 66, 2001, pp. 145-155.
[14] P. P. Hallan and N. Rana, Indian J. of Pure and Appl. Math., Vol. 35, No. 3, 2004, pp. 401-413.

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.