[1]
|
Das, K.P. and Surewicz, W.K. (1995) Temperature-induced exposure of hydrophobic surfaces and its effect on the chaperone activity of alpha-crystallin. FEBS Letters, 369, 321-325. http://dx.doi.org/10.1016/0014-5793(95)00775-5
|
[2]
|
Biswas, A., Saha, S. and Das, K.P. (2002) Structural features of molecular chaperones: A possible micellar connection. Journal of Surface Science and Technology, 18, 1-24.
|
[3]
|
Saha, S. and Das, K.P. (2007) Unfolding and refolding of bovine alpha-crystallin in urea and its chaperone activity. The Protein Journal, 26, 315-326. http://dx.doi.org/10.1007/s10930-007-9074-3
|
[4]
|
Saha, S. and Das, K.P. (2004) Relationship between chaperone activity and oligomeric size of recombinant human alphaA- and alphaB-crystallin: A tryptic digestion study. Proteins, 57, 610-617. http://dx.doi.org/10.1002/prot.20230
|
[5]
|
Narberhaus, F. (2002) Alpha-crystallin-type heat shock proteins: Socializing minichaperones in the context of a multi-chaperone network. Microbiology and Molecular Biology Reviews, 66, 64-93. http://dx.doi.org/10.1128/MMBR.66.1.64-93.2002
|
[6]
|
Sharma, K.K., Kaur, H., Kumar, G.S. and Kester, K. (1998) Interaction of 1,1’-bi(4-anilino)naphthalene-5,5’- disulfonic acid with alpha-crystallin. The Journal of Biological Chemistry, 273, 8965-8970. http://dx.doi.org/10.1074/jbc.273.15.8965
|
[7]
|
Sharma, K.K., Kumar, G.S., Murphy, A.S. and Kester, K. (1998) Identification of 1,1’-bi(4-anilino)naphthalene- 5,5’-disulfonic acid binding sequences in alpha-crystallin. The Journal of Biological Chemistry, 273, 15474-15478. http://dx.doi.org/10.1074/jbc.273.25.15474
|
[8]
|
Datta, S.A. and Rao, C.M. (2000) Packing-induced conformational and functional changes in the subunits of alpha-crystallin. The Journal of Biological Chemistry, 275, 41004-41010.
|
[9]
|
Pasta, S.Y., Raman, B., Ramakrishna, T. and Rao, C.M. (2002) Role of the C-terminal extensions of alpha-crystallins. Swapping the C-terminal extension of alpha-crystallin to alphaB-crystallin results in enhanced chaperone activity. The Journal of Biological Chemistry, 277, 45821-45828. http://dx.doi.org/10.1074/jbc.M206499200
|
[10]
|
Santhoshkumar, P. and Sharma, K.K. (2001) Phe71 is essential for chaperone-like function in alpha A-crystallin. The Journal of Biological Chemistry, 276, 47094-47099. http://dx.doi.org/10.1074/jbc.M107737200
|
[11]
|
Sharma, K.K., Kaur, H. and Kester, K. (1997) Functional elements in molecular chaperone alpha-crystallin: Identification of binding sites in alpha B-crystallin. Biochemical and Biophysical Research Communications, 239, 217-222. http://dx.doi.org/10.1006/bbrc.1997.7460
|
[12]
|
Sharma, K.K., Kumar, R.S., Kumar, G.S. and Quinn, P.T. (2000) Synthesis and characterization of a peptide identified as a functional element in alphaA-crystallin. The Journal of Biological Chemistry, 275, 3767-3771. http://dx.doi.org/10.1074/jbc.275.6.3767
|
[13]
|
Bova, M.P., Mchaourab, H.S., Han, Y. and Fung, B.K. (2000) Subunit exchange of small heat shock proteins. Analysis of oligomer formation of alphaA-crystallin and Hsp27 by fluorescence resonance energy transfer and site-directed truncations. The Journal of Biological Chemistry, 275, 1035-1042. http://dx.doi.org/10.1074/jbc.275.2.1035
|
[14]
|
Feil, I.K., Malfois, M., Hendle, J., van der Zandt H. and Svergun, D.I. (2001) A novel quaternary structure of the dimeric alpha-crystallin domain with chaperone-like activity. The Journal of Biological Chemistry, 276, 12024-12029. http://dx.doi.org/10.1074/jbc.M010856200
|
[15]
|
Kokke, B.P.A., Leroux, M.R., Candido, E.P.M., Boelens, W.C. and de Jong, W.W. (1998) Caenorhabditis elegans small heat-shock proteins Hsp12.2 and Hsp12.3 form tetramers and have no chaperone-like activity. FEBS Letters, 433, 228-232. http://dx.doi.org/10.1016/S0014-5793(98)00917-X
|
[16]
|
Leroux, M.R., Ma, B.J., Batelier, G., Melki, R. and Candido, E.P.M. (1997) Unique structural features of a novel class of small heat shock proteins. The Journal of Biological Chemistry, 272, 12847-12853. http://dx.doi.org/10.1016/S0014-5793(98)00917-X
|
[17]
|
Das, K.P., Petrash, J.M. and Surewicz, W.K. (1996) Conformational properties of substrate proteins bound to a molecular chaperone alpha-crystallin. The Journal of Biological Chemistry, 271, 10449-10452. http://dx.doi.org/10.1074/jbc.271.18.10449
|
[18]
|
Lakowicz, J.R. (1983) Principles of fluorescence spectroscopy. Plenum Press, New York. http://dx.doi.org/10.1007/978-1-4615-7658-7
|
[19]
|
Glazer, A.N. (1970) Specific chemical modification of proteins. Annual Review of Biochemistry, 39, 101. http://dx.doi.org/10.1146/annurev.bi.39.070170.000533
|
[20]
|
Means, G.E. and Feeney, R.E. (1971) Chemical modifications of proteins. Holden-Day Sanfransisco California.
|
[21]
|
Horwitz, J., Huang, Q.L., Ding, L.L. and Bova, M.P. (1998) Lens alpha-crystallin: Chaperone-like properties. Methods in Enzymology, 290, 365-383. http://dx.doi.org/10.1016/S0076-6879(98)90032-5
|
[22]
|
Bhattacharyya, J. and Das, K.P. (1999) Effect of sur-fac- tants on the prevention of protein aggregation during unfolding and refolding processes—Comparison with molecular chaperone-crystallin. Journal of Dispersion Science and Technology, 20, 1163-1178. http://dx.doi.org/10.1016/S0076-6879(98)90032-5
|
[23]
|
Muchowski, P.J. and Clark, J.I. (1998) ATP-enhanced molecular chaperone functions of the small heat shock protein human alphaB crystalline. Proceedings of the National Academy of Sciences, 95, 1004-1009. http://dx.doi.org/10.1016/S0076-6879(98)90032-5
|
[24]
|
Palmisano, D.V., Groth-Vasselli, B., Farnsworth, P.N. and Reddy, M.C. (1995) Interaction of ATP and lens alpha crystallin characterized by equilibrium binding studies and intrinsic tryptophan fluorescence spectroscopy. Biochimica et Biophysica Acta, 1246, 91-97. http://dx.doi.org/10.1016/0167-4838(94)00176-H
|
[25]
|
Rawat, U. and Rao, M.J. (1998) Interactions of chaperone alpha-crystallin with the molten globule state of xylose reductase. Implications for reconstitution of the active enzyme. The Journal of Biological Chemistry, 273, 9415-9423. http://dx.doi.org/10.1074/jbc.273.16.9415
|
[26]
|
Wang, K. and Spector, A. (2000) alpha-crystallin prevents irreversible protein denaturation and acts cooperatively with other heat-shock proteins to renature the stabilized partially denatured protein in an ATP-dependent manner. European Journal of Biochemistry, 267, 4705-4712. http://dx.doi.org/10.1046/j.1432-1327.2000.01521.x
|
[27]
|
Wang, K. and Spector, A. (2001) ATP causes small heat shock proteins to release denatured protein. European Journal of Biochemistry, 268, 6335-6345. http://dx.doi.org/10.1046/j.0014-2956.2001.02580.x
|
[28]
|
Biswas, A. and Das, K.P. (2004) Role of ATP on the interaction of alpha-crystallin with its substrates and its implications for the molecular chaperone function. The Journal of Biological Chemistry, 279, 42648-42657. http://dx.doi.org/10.1074/jbc.M404444200
|
[29]
|
Hasan, A., Smith, D.L. and Smith, J.B. (2002) Alpha-crystallin regions affected by adenosine 5’-triphosphate identified by hydrogen-deuterium exchange. Biochemistry, 41, 15876-15882. http://dx.doi.org/10.1021/bi026568x
|
[30]
|
Kumar, M.S., Mrudula, T., Mitra, N. and Reddy, G.B. (2004) Enhanced degradation and decreased stability of eye lens alpha-crystallin upon methylglyoxal modification. Experimental Eye Research, 79, 577-583. http://dx.doi.org/10.1016/j.exer.2004.07.003
|
[31]
|
Augusteyn, R.C., Hum, T.P., Putilin, T.P. and Thomson, J.A. (1987) The location of sulphydryl groups in alpha-crystallin. Biochimica et Biophysica Acta, 915, 132-139. http://dx.doi.org/10.1016/0167-4838(87)90133-6
|
[32]
|
Siezen, R.J., Coenders, F.G. and Hoenders, H.J. (1978) Three classes of sulfhydryl group in bovine alpha-crystallin according to reactivity to various reagents. Biochimica et Biophysica Acta, 537, 456-465. http://dx.doi.org/10.1016/0005-2795(78)90530-5
|
[33]
|
Doss-Pepe, E.W., Carew, E.L. and Koretz, J.F. (1998) Studies of the denaturation patterns of bovine alpha-crystallin using an ionic denaturant, guanidine hydrochlo-ride and a non-ionic denaturant, urea. Experimental Eye Research, 67, 657-679. http://dx.doi.org/10.1016/0005-2795(78)90530-5
|
[34]
|
Sun, T.X., Akhtar, N.J. and Liang, J.J.N. (1999) Thermodynamic stability of human lens recombinant alphaA-
and alphaB-crystallins. The Journal of Biological Chemistry, 274, 34067-34071. http://dx.doi.org/10.1074/jbc.274.48.34067
|
[35]
|
Biswas, A. and Das, K.P. (2004) SDS induced structural changes in alpha-crystallin and its effect on refolding. The Protein Journal, 23, 529-538. http://dx.doi.org/10.1007/s10930-004-7880-4
|
[36]
|
Pasta, S.Y., Raman, B., Ramakrishna, T. and Rao, C.M. (2004) The IXI/V motif in the C-terminal extension of alpha-crystallins: Alternative interactions and oligomeric assemblies. Molecular Vision, 10, 655-662.
|
[37]
|
Kim, K.K., Kim, R. and Kim, S.H. (1998) Crystal structure of a small heat-shock protein. Nature, 394, 595-599.
|
[38]
|
van Montfort, R.L., Basha, E., Friedrich, K.L., Slingsby, C. and Vierling, E. (2001) Crystal structure and assembly of a eukaryotic small heat shock protein. Nature Structural Biology, 8, 1025-1030. http://dx.doi.org/10.1038/nsb722
|
[39]
|
Kontorow, M., Horwitz, J., van Boekel, M.A.M., de Jong W.W. and Piatigorsky, J. (1995) Conversion from oligomers to tetramers enhances autophosphorylation by lens alpha A-crystallin. Specificity between alpha A- and alpha B-crystallin subunits. The Journal of Biological Chemistry, 270, 17215-17220. http://dx.doi.org/10.1074/jbc.270.29.17215
|
[40]
|
Rajan, R. and Balaram, P. (1996) A model for the interaction of trifluoroethanol with peptides and proteins. International Journal of Peptide and Protein Research, 48, 328-336. http://dx.doi.org/10.1111/j.1399-3011.1996.tb00849.x
|
[41]
|
Srinivas, V., Santhoshkumar, P. and Sharma, K.K. (2002) Effect of trifluoroethanol on the structural and functional properties of alpha-crystallin. Journal of Protein Chemistry, 21, 87-95. http://dx.doi.org/10.1023/A:1014572110926
|
[42]
|
Horwitz, J. (2003) Alpha-crystallin. Experimental Eye Research, 76, 145-153. http://dx.doi.org/10.1016/S0014-4835(02)00278-6
|
[43]
|
Muchowski, P.J., Hays, L.G., Yates, J.R. and Clark 3rd, J.I. (1999) ATP and the core “alpha-crystallin” domain of the small heat-shock protein alphaB-crystallin. The Journal of Biological Chemistry, 274, 30190-30195. http://dx.doi.org/10.1074/jbc.274.42.30190
|
[44]
|
Raman, B., Ramakrishna, T. and Rao, C.M. (1995) Temperature dependent chaperone-like activity of alpha-crystallin. FEBS Letters, 365, 133-136. http://dx.doi.org/10.1016/0014-5793(95)00440-K
|
[45]
|
Reddy, G.B., Das, K.P., Petrash, J.M. and Surewicz, W.K. (2000) Temperature-dependent chaperone activity and structural properties of human alphaA- and alphaB-crystallins. The Journal of Biological Chemistry, 275, 4565-4570. http://dx.doi.org/10.1074/jbc.275.7.4565
|
[46]
|
Maiti, M., Kono, M. and Chakraborti, B. (1988) Heat-induced changes in the conformation of alpha- and beta-crystallins: Unique thermal stability of alpha-crystallin. FEBS Letters, 236, 109-114. http://dx.doi.org/10.1016/0014-5793(88)80295-3
|