HS-SPME/GC-MS Analysis of VOC and Multivariate Techniques Applied to the Discrimination of Brazilian Varieties of Mango

Abstract

The present study analyzed the volatile compounds of three mango varieties (Tommy Atkins, Rosa and Espada) using the static headspace technique with SPME coupled to CG-MS. Multivariate methodologies, such as factorial design and response surface methodology, were used to optimize the conditions of adsorption and desorption of these substances. The data were evaluated by using principal components analysis (PCA) and hierarchical grouping analysis, in order to visualize grouping tendencies of volatile compounds. Thirty-seven volatile compounds belonging to different chemical classes, such as esters, terpenes, alcohols and others, were tentatively identified in the three varieties of mango. Amongst them, twenty-three presented chromatographic peaks with relative areas larger than 2%. The multivariate analysis made it possible to visualize the grouping tendencies of the mango samples, according to the presence of their respective volatile substances, and enabled the identification of the groups of substances responsible for the discrimination among the three varieties.

Share and Cite:

C. de Jesus Benevides, M. de Almeida Bezerra, P. Pereira and J. de Andrade, "HS-SPME/GC-MS Analysis of VOC and Multivariate Techniques Applied to the Discrimination of Brazilian Varieties of Mango," American Journal of Analytical Chemistry, Vol. 5 No. 3, 2014, pp. 157-164. doi: 10.4236/ajac.2014.53019.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] FAOSTAT 2008, “FAO Statistics, Food and Agriculture Organization of the United Nations,” Rome, 2012.
http://faostat.fao.org/
[2] S. V. Galán, “Worldwide Mango Production and Market. Current Situation and Future Prospects,” International Mango Symposiu on International Society for Horticultural Science, Sanya, 2010, pp. 9-12.
[3] C. Cheng, A. Seal, E. MacRae and M. Wang, “Identifying Volatile Compounds Associated with Sensory and Fruit Attributes in Diploid Actinidia chinensis (kiwifruit) Using Multivariate Analysis,” Euphytica, Vol. 181, No. 2, 2011, pp. 179-195.
http://www.ingentaconnect.com/content/klu/euph/2011/00000181/00000002/00000392
http://dx.doi.org/10.1007/s10681-011-0392-3
[4] R. S. Kulkarni, H. G. Chidley, H. Keshav, K. H. Pujari, A. P. Giri and V. S. Gupta, “Geographic Variation in the Flavour Volatiles of Alphonso mango,” Food Chemistry, Vol. 130, No. 1, 2012, pp. 58-66.
http://www.sciencedirect.com/science/article/pii/S030881461100940X
http://dx.doi.org/10.1016/j.foodchem.2011.06.053
[5] N. Laohaprasit, D. S. Ambadipudi and G. Srzednicki, “Optimisation of Extraction Conditions of Volatile Compounds in ‘Nam Dok Mai’ Mangoes,” International Food Research Journal, Vol. 18, No. 3, 2011, pp. 1043-1049.
http://www.ifrj.upm.edu.my/18%20(03)%202011/(27)IFRJ-2010-291.pdf
[6] H. G. Chidley, R. S. Kulkarni, K. H. Pujari, A. P. Giri and V. S. Gupta, “Spatial and Temporal Changes in the Volatile Profile of Alphonso mango upon Exogenous Ethylene Treatment,” Food Chemistry, Vol. 136, No. 2, 2013, pp. 585-594.
http://www.sciencedirect.com/science/article/pii/S0308814612013131
http://dx.doi.org/10.1016/j.foodchem.2012.08.029
[7] E. A. Malo, I. Gallegos-Torres, J. Toledo, J. Valle-Mora and J. C. Rojas, “Attraction of the West Indian Fruit Fly to Mango Fruit Volatiles,” Entomologia Experimentalis et Applicata, Vol. 142, No. 1, 2011, pp. 45-52.
[8] J. A. Pino, J. Mesa, Y. Muñoz, M. P. Martí and R. Marbot, “Volatile Components from Mango (Mangifera indica L.) Cultivars,” Journal Agricultural Food Chemistry, Vol. 53, No. 6, 2005, pp. 2213-2223.
http://pubs.acs.org/doi/abs/10.1021/jf0402633 http://dx.doi.org/10.1021/jf0402633
[9] E. T. Sousa, F. M. Rodrigues, C. C. Martins, F. S. Oliveira, P. A. P. Pereira and J. B. Andrade, “Multivariate Optimization and HS-SPME/GC-MS Analysis of VOCs in Red, Yellow and Purple Varieties of Capsicum chinense sp. Peppers,” Microchemical Journal, Vol. 82, No. 2, 2006, pp. 142-149.
http://www.sciencedirect.com/science/article/pii/S0026265X06000117
http://dx.doi.org/10.1016/j.microc.2006.01.017
[10] S. L. C. Ferreira, R. E. Bruns, E. G. P. Silva, W. N. L. Santos, C. M. Quintella, J. M. David, J. B. Andrade, M. C. Breitkreitz, I. C. S. F. Jardim and B. B. Neto, “Statistical Designs and Response Surface Techniques for the Optimization of Chromatographic Systems,” Journal of Chromatography A, Vol. 1158, No. 1, 2007, pp. 2-14.
http://www.sciencedirect.com/science/article/pii/S0021967307005298
http://dx.doi.org/10.1016/j.chroma.2007.03.051
[11] J. S. Ribeiro, F. Augusto, M. M. C. Ferreira and T. J. G. Salva, “Uso de Perfis Cromatográficos de Voláteis de Cafés Arábicas Torrados para a Diferenciação das Amostras Segundo o Sabor, o Aroma e a Qualidade Global da Bebida,” Química Nova, Vol. 33, No. 9, 2010, pp. 1897-1904.
http://quimicanova.sbq.org.br/qn/qnol/2010/vol33n9/14-AR10113.pdf
http://dx.doi.org/10.1590/S0100-40422010000900015
[12] F. Pellati, S. Benvenuti, F. Yoshizaki, D. Bertelli and M. C. C. Rossi, “Headspace Solid-Phase Microextraction-Gas Chromatography-Mass Spectrometry Analysis of the Volatile Compounds of Evodia species Fruits,” Journal of Chromatography A, Vol. 1087, No. 1-2, 2005, pp. 265-273.
http://www.sciencedirect.com/science/article/pii/S0021967305001305
http://dx.doi.org/10.1016/j.chroma.2005.01.060
[13] M. Zeaiter, J. M. Roger, V. Bellon-Maurel and D. N. Rutledge, “Robustness of Models Developed by Multivariate Calibration Part I: The Assessment of Robustness,” Trends in Analytical Chemistry, Vol. 23, No. 2, 2004, pp. 157-170.
http://www.sciencedirect.com/science/article/pii/S0165993604003073
http://dx.doi.org/10.1016/S0165-9936(04)00307-3
[14] K. R. Beeb, R. J. Pell and M. B. Seasholtz, “Chemometrics: A Practical Guide,” John Wiley & Sons, New York, 1998.
[15] P. Díaz, F. J. Señoráns, G. Reglero and E. Ibañez, “Truffle Aroma Analysis by Headspace Solid Phase Microextraction,” Journal Agricultural Food Chemistry, Vol. 50, No. 22, 2002, pp. 6468-6472.
http://pubs.acs.org/doi/abs/10.1021/jf025609t
http://dx.doi.org/10.1021/jf025609t
[16] H. Prosen and L. Zupancic-Kralj, “Solid-Phase Microextraction,” Trends in Analytical Chemistry, Vol. 18, No. 4, 1999, pp. 272-282.
http://www.sciencedirect.com/science/article/pii/S0165993698001095
http://dx.doi.org/10.1016/S0165-9936(98)00109-5
[17] S. Ulrich, “Solid-Phase Microextraction in Biomedical Analysis,” Journal of Chromatography A, Vol. 902, No. 1, 2000, pp. 167-194.
http://www.sciencedirect.com/science/article/pii/S0021967300009341
http://dx.doi.org/10.1016/S0021-9673(00)00934-1
[18] E. H. A. Andrade, J. G. S. Maia and M. G. B. Zoghbi, “Aroma Volatile Constituents of Brazilian Varieties of Mango Fruit,” Journal of Food Composition and Analysis, Vol. 13, No. 1, 2000, pp. 27-33.
http://www.sciencedirect.com/science/article/pii/S0889157599908414
http://dx.doi.org/10.1006/jfca.1999.0841
[19] K. M. Canuto, M. A. S. Neto and D. S. Garruti, “Composição Química Volátil, em Diferentes Estádios de Maturação, de Manga ‘Tommy Atkins’ Produzida no vale do S?o Francisco,” Quimica Nova, Vol. 32, No. 9, 2009, pp. 2377-2381.
http://quimicanova.sbq.org.br/qn/qnol/2009/vol32n9/26-AR09028.pdf
http://dx.doi.org/10.1590/S0100-40422009000900027
[20] X. Li, B. Yu, P. Curran and S. Q. Liu, “Chemical and Volatile Composition of Mango Wines Fermented with Different Saccharomyces cerevisiae Yeast Strains,” South African Journal for Enology and Viticulture, Vol. 32, No. 1, 2011, pp. 117-128.
http://www.sawislibrary.co.za/dbtextimages/72569.pdf

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.