Experimental Investigation of Granular Activated Carbon/R-134a Pair for Adsorption Cooling System Applications

Abstract

The objective of this study is to investigate the adsorption characteristics of granular activated carbon GAC/R-134a pair in the temperature range of 20℃ - 60℃ and pressure up to 10 bars. The Dubinin-Astakhov adsorption equilibrium model is fit to experimental data with acceptable error limit. The pressure-temperature-concentration (P-T-X) diagram of the pair is also presented. The isosteric heat of adsorption of R-134a on activated carbon has been calculated using the Clausius-Clapeyron equation as a function of adsorption capacity. The maximum adsorption capacity was found to be 1.92 kgR134a/kg carbon at 20℃ after 1200 s. The experimental results also show that the increase of heat transfer area improves the adsorption capacity per kg of adsorber, which leads to the design of a finned tubes heat exchanger adsorption unit.

Share and Cite:

Attalla, M. and Sadek, S. (2014) Experimental Investigation of Granular Activated Carbon/R-134a Pair for Adsorption Cooling System Applications. Journal of Power and Energy Engineering, 2, 11-20. doi: 10.4236/jpee.2014.22002.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] F. Meuiner, “Theoretical Performances of Solid Adsorbent Cascading Cycles Using the Zeolite-Water and Active Carbon-Methanol Pairs: Four Case Studies,” Heat Recovery System, Vol. 6, No. 6, 1986, pp. 491-498.
http://dx.doi.org/10.1016/0198-7593(86)90042-1
[2] F. Meuiner, “Solid Sorption Heat Powered Cycles for Cooling and Heat Pumping Applications,” Applied Thermal Engineering, Vol. 18, No. 9-10, 1998, pp. 715-729.
http://dx.doi.org/10.1016/S1359-4311(97)00122-1
[3] I. I. El-Sharkawy, K. Kuwahara, B. B. Saha, S. Komyama and K. C. Ng, “Experimental Investigation of Activated Carbon Fibers/Ethanol Pairs for Adsorption Cooling System Application,” Applied Thermal Engineering, Vol. 26, No. 8-9, 2006, pp. 859-865.
http://dx.doi.org/10.1016/j.applthermaleng.2005.10.010
[4] L. W. Wang, R. Z. Wang and R. G. Oliveira, “A Review on Adsorption Working Pairs for Refrigeration,” Renewable and Sustainable Energy Review, Vol. 13, No. 3, 2009, pp. 518-534.
http://dx.doi.org/10.1016/j.rser.2007.12.002
[5] B. B. Saha, K. Habib, I. I. El-Sharakawy and S. Koyama, “Adsorption Characteristics and Heat of Adsorption Measurements of R134a on Activated Carbon,” International Journal of Refrigeration, Vol. 32, No. 7, 2009, pp. 15631569. http://dx.doi.org/10.1016/j.ijrefrig.2009.03.010
[6] D. J. Miles and S. V. Shelton, “Design and Testing of a Solid Sorption Heat Pump System,” Applied Thermal Engineering, Vol. 16, No. 5, 1996, pp. 389-394.
http://dx.doi.org/10.1016/1359-4311(95)00021-6
[7] D. C. Wang, Z. Z. Xia and J. Y. Zhu, “Design and Performance Prediction of a Novel Zeolite-Water Adsorption Air Condition,” Energy Conversion and Management, Vol. 47, No. 5, 2006, pp. 590-610.
http://dx.doi.org/10.1016/j.enconman.2005.05.011
[8] R. Z. Wang, J. P. Jia, Y. H. Zhu, Y. Teng, J. Y. Wu, J. Cheng and Q. B. Wang, “Study on a New Solid Adsorption Refrigeration Pair: Activated Carbon Fiber-Methanol Pair,” Transactions on ASME, Vol. 119, No. 3, 1997, pp. 214-218.
[9] Y. Hamamoto, K. C. A. Alam, B. B. Saha, S. Koyama, A. Akisawa and T. Kashiwagi, “Study on Adsorption Refrigeration Cycle Utilizing Activated Carbon Fibers. Part 1 Adsorption Characteristics,” International Journal of Refrigeration, Vol. 29, No. 2, 2006, pp. 305-314.
http://dx.doi.org/10.1016/j.ijrefrig.2005.04.008
[10] K. Habib, B. B. Saha, A. Charkraborty and S. Koyama, “Performance Evaluation of Combined Adsorption Refrigeration Cycles,” International Journal of Refrigeration, Vol. 34, No. 1, 2011, pp. 129-137.
http://dx.doi.org/10.1016/j.ijrefrig.2010.09.005
[11] A. A. Askalany, M. Salem, I. M. Ismail, A. H. H. Ail and M. G. Morsy, “Experimental Study on Adsorption-Desorption Characteristics of Granular Activated Carbon/ R134a Pair,” International Journal of Refrigeration, Vol. 35, No. 3, 2012, pp. 494-498.
http://dx.doi.org/10.1016/j.ijrefrig.2011.04.002
[12] A. A. Askalany, B. B. Saha, M. S. Ahmed and I. M. Ismail, “Adsorption Cooling System Employing Granular Activate Carbon-R134a Pair for Renewable Energy Applications,” International Journal of Refrigeration, Vol. 36, No. 3, 2013, pp. 1037-1044.
http://dx.doi.org/10.1016/j.ijrefrig.2012.11.009
[13] B. S. Akkimaradi, M. Prasad, P. Dutta and K. Srinivasan, “Adsorption of 1,1,1,2-Tetrafluoroethane on Activated Charcoal,” Journal of Chemical Engineering Data, Vol. 46, No. 2, 2001, pp. 417-422.
http://dx.doi.org/10.1021/je000277e
[14] M. Pons and J. J. Guilleminot, “Design of an Experimental Solar Powered Adsorption Ice Maker,” ASME JJSE, Vol. 108, No. 4, 1986, pp. 332-337.
[15] L. L. Vasiliev, D. A. Mishkinis A. A. antukh and L. L. J. Vasiliev, “Solar-Gas Solid Sorption Heat Pump,” Applied Thermal Engineering, Vol. 21, No. 5, 2001, pp. 573-583.
http://dx.doi.org/10.1016/S1359-4311(00)00069-7
[16] L. L. Vasliev, “Solar Sorption Refrigeration with Dual Sources of Energy,” ISHPC’02 Proceedings of the International Sorption Heat Pump Conferences, Shanghai, 2427 September 2002, pp. 26-33.
[17] N. D. Banker, P. Dutta, P. Prasad and K. Srinivasan, “Activated Carbon + HFC 134a Based Two Stage Thermal Compression Adsorption Refrigeration Using Low Grade Thermal Energy Sources,” Applied Thermal Engineering, Vol. 29, No. 11-12, 2009, pp. 2257-2264.
http://dx.doi.org/10.1016/j.applthermaleng.2008.11.006
[18] N. D. Banker, P. Dutta, P. Prasad and K. Srinivasan, “Development and Transient Performance Results of a Single Stage Activated Carbon—HFC 134a Closed Cycle Adsorption Cooling System,” Applied Thermal Engineering, Vol. 30, No. 10, 2010, pp. 1126-1132.
http://dx.doi.org/10.1016/j.applthermaleng.2010.01.027
[19] W. S. Chang, C. C. Wang and C. C. Shieh, “Experimental Study of a Solid Adsorption Cooling System Using FlatTube Heat Exchangers as Adsorption Bed,” Applied Thermal Engineering, Vol. 27, No. 13, 2007, pp. 2195-12199.
http://dx.doi.org/10.1016/j.applthermaleng.2005.07.022
[20] F. Watanabe, J. Kozuka, M. Ito and M. Hasatani, “Heat and Mass Transfer in Super Active Carbon/Ethanol Adsorption Heat Pump with a Packed Bed Type Adsorber,” Heat Transfer Japan Research, Vol. 25, No. 7, 1996, pp. 466-475.
http://dx.doi.org/10.1002/(SICI)1520-6556(1996)25:7<466::AID-HTJ5>3.0.CO;2-V
[21] E. C. Boelman, B. B. Saha and T. Kashiwagi, “Experimental Investigated of a Silica Gel Water Adsorption Refrigeration Cycle—The Influence of Operating Conditions on Cooling Output and COP,” ASHRA Transactions, Vol. 101, No. 2, 1995, pp. 358-366.
[22] M. Ito, F. Watanabe and M. Hasatani, “Cold Energy Generation Characteristics of Adsorption Heat Pump Using Direct Heat Exchanger Module,” Kagaku Kougaku Ronbunshu, Vol. 22, No. 4, 1996, pp. 926-929.
http://dx.doi.org/10.1252/kakoronbunshu.22.926
[23] Y. H. Zhang, “Adsorption Function,” Publishing House of Scientific and Technology Literature in Shanghai, Shanghai, 1989.
[24] R. Tiller-Roth and H. D. Baehr, “An International Standard Formulation for the Thermodynamic Properties of 1,1,1,2-Tetrafluoroethane (HCF-134a) from 170 K to 455 K and Pressure up to 70 MPa,” Journal Physics Chemistry Reference Data, Vol. 23, No. 5, 1994, pp. 657-729.
http://dx.doi.org/10.1063/1.555958
[25] L. W. Wang, J. Y. Wu, R. Z. Wang Y. X. Xu and S. G. Wang, “Experimental Study of a Solidified Activated Carbon-Methanol Adsorption Ice Maker,” Applied Thermal Engineering, Vol. 23, No. 12, 2003, pp. 1453-1462.
http://dx.doi.org/10.1016/S1359-4311(03)00103-0
[26] L. W. Wang, J. Y. Wu, R. Z. Wang, Y. X. Xu, S. G. Wang and X. R. Li, “Study of the Performance of Activated Carbon-Methanol Adsorption Systems Concerning Heat and Mass Transfer,” Applied Thermal Engineering, Vol. 23, No. 13, 2003, pp. 1605-1617.
http://dx.doi.org/10.1016/S1359-4311(03)00104-2
[27] I. Solmus, C. Yamali, B. Kaftanoglu, D. Baker and A. Caglar, “Adsorption Properties of a Natural Zeolite-Water Pair for Used in Adsorption Cooling Cycles,” Applied Energy, Vol. 87, No. 6, 2010, pp. 2062-2067.
http://dx.doi.org/10.1016/j.apenergy.2009.11.027
[28] S. L. Li, J. Y. Wu, Z. Z. Xia and R. Z. Wang, “Study on the Adsorption Isosteres of the Composite Adsorbent CaCl2 and Expanded Graphite,” Energy Conversion and Management, Vol. 52, No. 2, 2001, pp. 1501-1506.
http://dx.doi.org/10.1016/j.enconman.2010.10.015
[29] I. I. El-Sharkawy, B. B. Saha, S. Koyama and K. Srinivasan, “Isosteric Heats of Adsorption Extracted from Experiments of Ethanol and HFC 134a on Carbon Based Adsorbents,” International Journal of Heat and Mass Transfer, Vol. 50, No. 5-6, 2007, pp. 902-907.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2006.08.036

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.