Effect of Sintering Time on the Structural, Magnetic and Electrical Transport Properties of Mg0.35Cu0.20Zn0.45Fe1.94O4 Ferrites

Abstract

Spinel-type Mg0.35Cu0.20Zn0.45Fe1.94O4 ferrites were synthesized by using the solid-state reaction technique. The XRD patterns of the sintered samples indicated the formation of single-phase cubic spinel structure. The apparent density of the sample is found to increase whereas porosity decreases with the increase in sintering time. The grain growth of the samples is enhanced with the increase in sintering time which is attributed to the liquid phase due to CuO during sintering. The initial permeability of the ferrite is found to increase with the increase in sintering time but the resonance frequency shifts towards the lower frequency. This increase in permeability is correlated to the increase of density and the grain size of the sample. The resistivity of the samples decreases with 103/T ensuring the semiconducting nature of the samples. Room temperature DC resistivity and activation energy of the samples decrease what is attributed to the increased Fe2+ ions content with the increase in sintering time. The dielectric constant (e) of the samples decreases with increasing frequency whereas e increases as the temperature increases exhibiting normal dielectric behaviour of the magnetic semiconductor ferrite. The observed variation of electrical and dielectric properties is explained on the basis of Fe2+/Fe3+ ionic concentration as well as the electronic hopping frequency between Fe3+ and Fe2+ ions in the present ferrite sample.

Share and Cite:

M. Aliuzzaman, M. Haque, M. Ferdous, S. Hoque and M. Hakim, "Effect of Sintering Time on the Structural, Magnetic and Electrical Transport Properties of Mg0.35Cu0.20Zn0.45Fe1.94O4 Ferrites," World Journal of Condensed Matter Physics, Vol. 4 No. 1, 2014, pp. 13-23. doi: 10.4236/wjcmp.2014.41003.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] E. Reslescu, N. Reslescu and P. D. Popa, “Fine-Grained MgCu Ferrite with Ionic Substitutions Used as Humidity Sensor,” Journal of Magnetism and Magnetic Materials, Vol. 290-291, No. 2, 2005, pp. 1001-1004.
http://dx.doi.org/10.1016/j.jmmm.2004.11.309
[2] M. Ajmal, N. Abbas Shah, A. Maqsood, M. S. Awan and M. Arif, “Influence of Sintering Time on the Structural, Electrical and Magnetic Properties of Polycrystalline Cu0.6Zn0.4Fe2O4 Ferrites,” Journal of Alloys and Compounds, Vol. 508, No. 1, 2010, pp. 226-232.
http://dx.doi.org/10.1016/j.jallcom.2010.08.067
[3] J. Bera and P. K. Roy, “Effect of Grain Size on Electromagnetic Properties of Ni0.7Zn0.3Fe2O4 Ferrite,” Physica B, Vol. 363, No. 1-4, 2005, pp. 128-132.
http://dx.doi.org/10.1016/j.physb.2005.03.010
[4] G. C. Jain, B. K. Das, R. B. Tripathi and R. Narayan, “Influence of V2O5 Addition on Electrical Conductivity and Magnetic Properties of Ni-Zn Ferrites,” IEEE Transaction on Magnetics, Vol. 18, No. 2, 1982, pp. 776-778.
http://dx.doi.org/10.1109/TMAG.1982.1061820
[5] T. Nakamura, “Low-Temperature Sintering of Ni-Zn-Cu Ferrite and Its Permeability Spectra,” Journal of Magnetism and Magnetic Materials, Vol. 168, Vol. 3, 1997, pp. 285-291.
http://dx.doi.org/10.1016/S0304-8853(96)00709-3
[6] J. E. Burke, “Ceramic Fabrication Processes,” Edited by W. D. Kingery, Wiley, New York, 1958, pp. 120-125.
[7] M. M. Haque, M. Huq and M. A. Hakim, “Thermal Hysteresis of Permeability and Transport Properties of MnSubstituted Mg-Cu-Zn Ferrites,” Journal of Physics D: Applied Physics, Vol. 41, No. 5, 2008, 10 p.
http://dx.doi.org/10.1088/0022-3727/41/5/055007
[8] M. M. Haque, M. Huq and M. A. Hakim, “Influence of CuO and Sintering Temperature on the Microstructure and Magnetic Properties of Mg-Cu-Zn Ferrites,” Journal of Magnetism and Magnetic Materials, Vol. 320, No. 21, 2008, pp. 2792-2799.
http://dx.doi.org/10.1016/j.jmmm.2008.06.017
[9] A. Bhaskar, B. R. Kanth and S. R. Murthy, “Electrical Properties of Mn Added MgCuZn Ferrites Prepared by Microwave Sintering Method,” Journal of Magnetism and Magnetic Materials, Vol. 283, No. 1, 2004, pp. 109-116.
http://dx.doi.org/10.1016/j.jmmm.2004.05.039
[10] N. Reslescu, E. Reslescu, C. L. Sava, F. Tudorache and P. D. Popa, “On the Effects of Ga3+ and La3+ Ions in MgCu Ferrite: Humidity-Sensitive Electrical Conduction,” Crystal Research Technology, Vol. 39, No. 6, 2004, pp. 548-557. http://dx.doi.org/10.1002/crat.200310223
[11] J. B. Nelson and D. P. Riley, “An Experimental Investigation of Extrapolation Methods in the Derivation of Accurate Unit-Cell Dimensions of Crystals,” Proceedings of the Physical Society (London), Vol. 57, No. 3, 1945, p. 160. http://dx.doi.org/10.1088/0959-5309/57/3/302
[12] G. T. Rado, R. W. Wright and W. H. Emerson, “Ferromagnetism at Very High Frequencies. III. Two Mechanisms of Dispersion in a Ferrite,” Physical Review, Vol. 80, No. 2, 1950, pp. 273-280.
http://dx.doi.org/10.1103/PhysRev.80.273
[13] T. Nakamura, “Snoek’s Limit in High-Frequency Permeability of Polycrystalline Ni-Zn, Mg-Zn, and Ni-Zn-Cu Spinel Ferrites,” Journal of Applied Physics, Vol. 88, No. 1, 2004, pp. 348-353. http://dx.doi.org/10.1063/1.373666
[14] F. G. Brockman, P. H. Dowling and W. G. Steneck, “Dimensional Effects Resulting from a High Dielectric Constant Found in a Ferromagnetic Ferrite,” Physical Review, Vol. 77, No. 1, 1950, pp. 85-93.
http://dx.doi.org/10.1103/PhysRev.77.85
[15] J. L. Snoek, “Dispersion and Absorption in Magnetic Ferrites at Frequencies above One Mc/s,” Physica, Vol. 14, No. 4, 1948, pp. 207-217.
http://dx.doi.org/10.1016/0031-8914(48)90038-X
[16] O. F. Caltun, L. Spinu, A. I. Stancu, D. Thung and W. Zhou, “Study of the Microstructure and of the Permeability Spectra of Ni-Zn-Cu Ferrites,” Journal of Magnetism and Magnetic Materials, Vol. 242-245, No. 1, 2002, pp. 160-162.
http://dx.doi.org/10.1016/S0304-8853(01)01187-8
[17] J. Smit and H. P. J. Wijn, “Ferrites (Philips Tech. Library (Netherlands),” 1959.
[18] A. Globus and M. Guyot, “Control of the Susceptibility Spectrum in Polycrystalline Ferrite Materials and Frequency Threshold of the Losses,” IEEE Transaction on Magnetics, Vol. 6, No. 3, 1970, pp. 614-617.
http://dx.doi.org/10.1109/TMAG.1970.1066878
[19] K. G. Brooks, Y. Berta and V. R. W. Amarakoon, “Effect of Bi2O3 on Impurity Ion Distribution and Electrical Resistivity of Li-Zn Ferrites,” Journal American Ceramic Society, Vol. 75, No. 11, 1992, pp. 3065-3069.
http://dx.doi.org/10.1111/j.1151-2916.1992.tb04387.x
[20] J. J. Shrotri, S. D. Kulkarni, C. E. Deshpande and S. K. Date, “Effect of Cu Substitution on the Magnetic and Electrical Properties of Ni-Zn Ferrite Synthesised by Soft Chemical Method,” Materials Chemistry and Physics, Vol. 59, No. 1, 1999, pp. 1-5.
http://dx.doi.org/10.1016/S0254-0584(99)00019-X
[21] A. Globus, H. Pascard and V. J. Cagan, “Distance between Magnetic Ions and Fundamental Properties in Ferrites,” Journal of Physique Coll, Vol. 38, No. C1, 1977, pp. C1163. http://dx.doi.org/10.1051/jphyscol:1977132
[22] G. C. Jain, B. K. Das, R. S. Khanduja and S. C. Gupta, “Effect of Intragranular Porosity of Initial Permeability and Coercive Force in a Manganese Zinc Ferrite,” Journal of Materials Science, Vol. 11, No. 7, 1976, pp. 1335-1338. http://dx.doi.org/10.1007/BF00545155
[23] E. J. W. Verwey and P. W. Haayman, “Electronic Conductivity and Transition Point of Magnetite (‘Fe3O4’),” Physica, Vol. 8, No. 9, 1941, pp. 979-987.
http://dx.doi.org/10.1016/S0031-8914(41)80005-6
[24] J. Maxwell, “A Treatise on Electricity and Magnetism,” Clarendon Press, Oxford, London, 1982.
[25] K. Wangner, “Annalen de Physik,” Leipzig, Vol. 40, No. 5, 1913, p. 817.
http://dx.doi.org/10.1002/andp.19133450502
[26] C. G. Koops, “On the Dispersion of Resistivity and Dielectric Constant of Some Semiconductors at Audiofrequencies,” Physical Review, Vol. 83, No. 1, 1951, pp. 121-124. http://dx.doi.org/10.1103/PhysRev.83.121
[27] M. M. Haque, M. Huq and M. A. Hakim, “Densification, Magnetic and Dielectric Behaviour of Cu-Substituted MgZn Ferrites,” Materials Chemistry and Physics, Vol. 112, No. 2, 2008, pp. 580-586.
http://dx.doi.org/10.1016/j.matchemphys.2008.05.097
[28] Z. X. Yue, Z. Ji, L. T. Li, X. L. Wang and Z. L. Gui, “Effect of Copper on the Electromagnetic Properties of MgZn-Cu Ferrites Prepared by Sol-Gel Auto-Combustion Method,” Materials Science and Engineering B, Vol. 86, No. 1, 2001, pp. 64-69.
http://dx.doi.org/10.1016/S0921-5107(01)00660-2
[29] N. Gupta, S. C. Kashyap and D. C. Dube, “Dielectric and Magnetic Properties of Citrate-Route-Processed Li-Co Spinel Ferrites,” Physics Status Solidi (a), Vol. 240, No. 7, 2007, pp. 2441-2452.
http://dx.doi.org/10.1002/pssa.200622146
[30] Z. X. Yue, Z. Ji, Z. L. Gui and L. T. Li, “Magnetic and Electrical Properties of Low-Temperature Sintered MnDoped NiCuZn Ferrites,” Journal of Magnetism and Magnetic Materials, Vol. 264, No. 2-3, 2003, pp. 258-263.
http://dx.doi.org/10.1016/S0304-8853(03)00214-2
[31] S. S. Bellad and B. K. Chougule, “Composition and Frequency Dependent Dielectric Properties of Li-Mg-Ti Ferrites,” Materials Chemistry and Physics, Vol. 66, No. 1, 2000, pp. 58-63.
http://dx.doi.org/10.1016/S0254-0584(00)00273-X
[32] C. B. Kolekar, P. N. Kamble, S. G. Kulkarni and A. S. Vaingankar, “Effect of Gd3+ Substitution on Dielectric Behaviour of Copper-Cadmium Ferrites,” Journal of Materials Science, Vol. 30, No. 22, 1995, pp. 5784-5788.
http://dx.doi.org/10.1007/BF00356721
[33] L. I. Rabinkin and Z. I. Novikova, “Ferrites,” Doklady Akademii Nauk SSSR, Minsk, USSR, 1960, p. 146.
[34] K. Iwauchi, “Dielectric Properties of Fine Particles of Fe3O4 and Some Ferrites,” Japanese Journal of Applied Physics, Vol. 10, No. 11, 1971, pp. 1520-1528.
http://dx.doi.org/10.1143/JJAP.10.1520
[35] M. A. Ahmed, E. Aeia and F. M. Salem, “Spectroscopic and Electrical Properties of Mg-Ti Ferrite Doped with Different Are-Earth Elements,” Physica B, Vol. 381, No. 1-2, 2006, pp. 144-155.
http://dx.doi.org/10.1016/j.physb.2005.12.265
[36] A. M. Abdeen, “Dielectric Behaviour in Ni-Zn Ferrites,” Journal of Magnetism and Magnetic Materials, Vol. 192, No. 1, 1999, pp. 121-129.
http://dx.doi.org/10.1016/S0304-8853(98)00324-2
[37] A. Verma, O. P. Khakur, C. Prakash, T. C. Goel and R. G. Mendiratta, “Temperature Dependence of Electrical Properties of Nickel-Zinc Ferrites Processed by the Citrate Precursor Technique,” Materials Science and Engineering B, Vol. 116, No. 1, 2005, pp. 1-6.
http://dx.doi.org/10.1016/j.mseb.2004.08.011
[38] M. George, S. S. Nair, A. M. John, P. A. Joy and M. R. Anantharaman, “Structural, Magnetic and Electrical Properties of the Sol-Gel Prepared Li0.5Fe2.5O4 Fine Particles,” Journal of Physics D: Applied Physics, Vol. 39, No. 5, 2006, pp. 900-910.
http://dx.doi.org/10.1088/0022-3727/39/5/002
[39] M. A. El Hiti, “Dielectric Behaviour in Mg-Zn Ferrites,” Journal of Magnetism and Magnetic Materials, Vol. 192, No. 2, 1999, pp. 305-313.
http://dx.doi.org/10.1016/S0304-8853(98)00356-4

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.