Microvesicles in Gliomas and Medulloblastomas: An Overview

DOI: 10.4236/jct.2014.52023   PDF   HTML     8,481 Downloads   15,970 Views   Citations


Microvesicles (MVs) or shedding membrane vesicles have recently been described as a novel model of intercellular communication. Previously, MVs were considered as unnecessary or secreted cellular debris, but MVs have lately been described as having roles in a variety of biological functions, such as cell homeostasis and the cellular processes involved in the oncogenesis of many types of tumors. Carrying several key molecules that contribute to tumor development and progression, similar to mRNAs, microRNAs and other non-coding RNAs, DNA and even small proteins, MVs can be considered as a ubiquitous form of novel cell communication that is present in most somatic cells. Although tumor-derived MVs have been demonstrated in different types of cancers, the literature data on MVs in primary central nervous system (CNS) tumors are relatively scarce. In this review, we address the involvement of MVs in diffuse astrocytomas, particularly glioblastomas, as well as oligodendrogliomas and medulloblastomas. We placed particular focus on the cellular crosstalk between tumor and “normal” cells, the putative mechanisms how the tumor microenvironment is modulated and the spread of aggressive phenotypes. Additionally, a better understanding of the participation of tumor-derived MVs in the regulation of key cancer pathways will offer new insights into tumor pathogenesis and the mechanisms of multidrug resistance, and may help to develop new strategies for novel therapies against these infiltrative CNS tumors.

Share and Cite:

M. Nawaz, F. Fatima, B. Zanetti, I. Martins, N. Schiavotelo, N. Mendes, R. Silvestre and L. Neder, "Microvesicles in Gliomas and Medulloblastomas: An Overview," Journal of Cancer Therapy, Vol. 5 No. 2, 2014, pp. 182-191. doi: 10.4236/jct.2014.52023.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] D. N. Louis, H. Ohgaki, O. D. Wiestler, W. K. Cavenee, P. C. Burger, A. Jouvet , B. W. Scheithauer and P. Kleihues, “The 2007 WHO Classi Wcation of Tumours of the Central Nervous System,” Acta Neuropathologica, Vol. 114, No. 2, 2007, pp. 97-109. http://dx.doi.org/10.1007/s00401-007-0243-4
[2] M. J. Riemenschneider and G. Reifenberger, “Molecular Neuropathology of Low-Grade Gliomas and Its Clinical Impact,” Advances and Technical Standards in Neurosurgery, Vol. 35, 2010, pp. 35-64. http://dx.doi.org/10.1007/978-3-211-99481-8_2
[3] S. Mueller and S. Chang, “Pediatric Brain Tumors: Current Treatment Strategies and Future Therapeutic Approaches,” Neurotherapeutics, Vol. 6, No. 3, 2009, pp. 570-586. http://dx.doi.org/10. 1016/j.nurt.2009.04.006
[4] G. Dhall, “Medulloblastoma,” Journal of Child Neurology, Vol. 24, No. 11, 2009, pp.1418-1430. http://dx.doi.org/10.1177/0883073809341668
[5] B. Gy?rgy, T. G. Szabó, M. Pásztói, Z. Pál, P. Misják, B. Aradi, V. László, E. Pállinger, E. Pap, A. Kittel, G. Nagy, A. Falus and E. I. Buzás, “Membrane Vesicles, Current State-of-the-Art: Emerging Role of Extracellular Vesicles,” Cellular and Molecular Life Sciences, Vol. 68, No. 16, 2011, pp. 2667-2688. http://dx.doi.org/10.1007/s00018-011-0689-3
[6] C. D’Souza-Schorey and J. W. Clancy, “Tumor-Derived Microvesicles: Shedding Light on Novel Microenvironment Modulators and Prospective Cancer Biomarkers,” Genes & Development, Vol. 26, No. 12, 2012, pp. 1287-1299. http://dx.doi.org/10.1101/gad.192351.112
[7] C. C. Y. Li, S. A. Eaton, P. E. Young, M. Lee, R. Shuttleworth, T. D. Humphreys, G. E. Grau, V. Combes, M. Bebawy, J. Gong, S. Brammah, M. E. Buckland and C. M. Suter, “Glioma Microvesicles Carry Selectively Packaged Coding and Noncoding RNAs Which Alter Gene Expression in Recipient Cells,” RNA Biology, Vol. 10, No. 8, 2013, pp. 1-12. http://dx.doi.org/10.4161/rna.25281
[8] C. Thery, L. Zitvogel and S. Amigorena, “Exosomes: Composition, Biogenesis and Function,” Nature Reviews Immunology, Vol. 2, No. 8, 2002, pp. 569-579.
[9] H. Valadi, K. Ekstrom, A. Bossios, M. Sjostrand, J. J. Lee and J. O. Lotvall, “Exosome-Mediated Transfer of mRNAs and microRNAs Is a Novel Mechanism of Genetic Exchange between Cells,” Nature Cell Biology, Vol. 9, 2007, pp. 654-659. http://dx.doi.org/10.1038/ncb1596
[10] L. Balaj, R. Lessard, L. Dai, Y.-J. Cho, S. L. Pomeroy, X. O. Breakefield and J. Skog, “Tumour Microvesicles Contain Retrotransposon Elements and Amplified Oncogene Sequences,” Nature Communications, Vol. 2, No. 180, 2011. http://dx.doi.org/10.1038/ncomms1180
[11] D. D. Taylor, C. Gercel-Taylor and R. N. A. Micro, “Signatures of Tumorderived Exosomes as Diagnostic Biomarkers of Ovarian Cancer,” Gynecologic Oncology, Vol. 110, No. 1, 2008, pp. 13-21.
[12] J. Skog, T. Würdinger, S. van Rijn, D. H. Meijer, .L Gainche, M. Sena-Esteves, W. T. Curry Jr., B. S. Carter, A. M. Krichevsky and X. O. Breakefield, “Glioblastoma Microvesicles Transport RNA and Proteins that Promote Tumour Growth and Provide Diagnostic Biomarkers,” Nature Cell Biology, Vol. 10, No. 12, 2008, pp. 1470-1476. http://dx.doi.org/10.1038/ncb1800
[13] S. Mathivanan, C. J. Fahner, G. E. Reid and R. J. Simpson, “ExoCarta. 2012: Database of Exosomal Proteins, RNA and Lipids,” Nucleic Acids Research, Vol. 40, No. 1, 2012, pp. D1241-D1244.
[14] D. Pilzer, O. Gasser, O. Moskovich, J. Schifferli and Z. Fishelson, “Emission of Membrane Vesicles: Roles in Complement Resistance, Immunity and Cancer,” Springer Seminars in Immunopathology, Vol. 27, No. 3, 2005, pp. 375-387. http://dx.doi.org/10.1007/s00281-005-0004-1
[15] J. Guduric-Fuchs, A. O’Connor, B. Camp, C. L. O’Neill, R. J. Medina and D. A. Simpson, “Selective Extracellular Vesicle Mediated Export of an Overlapping Set of microRNAs from Multiple Cell Types,” BMC Genomics, Vol. 13, 2012, p. 357. http://dx.doi.org/10.1186/1471-2164-13-357
[16] C. Théry, M. Ostrowski and E. Segura, “Membrane Vesicles as Conveyors of Immune Responses,” Nature Reviews Immunology, Vol. 9, 2009, pp. 581-593. http://dx.doi.org/10.1038/nri2567
[17] D. J. Katzmann, C. J. Stefan, M. Babst and S. D. Emr, “Vps27 Recruits ESCRT Machinery to Endosomes during MVB Sorting,” The Journal of Cell Biology, Vol. 162, No. 3, 2003, pp. 413-423. http://dx.doi.org/10.1083/jcb.200302136
[18] M. Babst, D. J. Katzmann, W. B. Snyder, B. Wendl and S. D. Emr, “Endosome-Associated Complex, ESCRT-II, Recruits Transport Machinery for Protein Sorting at the Multivesicular Body,” Development Cell, Vol. 3, No. 2, 2002, pp. 283-289. http://dx.doi.org/10.1016/S1534-5807(02)00219-8
[19] K. Trajkovic, C. Hsu, S. Chiantia, L. Rajendran, D. Wenzel, F. Wieland, P. Schwille, B. Brügger and M. Simons, “Ceramide Triggers Budding of Exosome Vesicles into Multivesicular Endosomes,” Science, Vol. 319, No. 5867, 2008, pp. 1244-1247. http://dx.doi.org/10.1126/science.1153124
[20] K. E. Rankin and L. Wordeman, “Long Astral Microtubules Uncouple Mitotic Spindles from the Cytokinetic Furrow,” The Journal of Cell Biology, Vol. 190, No. 1, 2010, pp. 35-43.
[21] V. Muralidharan-Chari, J. Clancy, C. Plou, M. Romao, P. Chavrier, G Raposo and C. D’Souza-Schorey, “ARF6-Regulated Shedding of Tumor Cell-Derived Plasma Membrane Microvesicles,” Current Biology, Vol. 19, No. 22, 2009, pp. 1875-1885. http://dx.doi.org/10.1016/j.cub.2009.09.059
[22] K. Al-Nedawi, B. Meehan, J. Micallef, V. Lhotak, L. May, A. Guha and J. Rak, “Intercellular Transfer of the Oncogenic Receptor EGFRvIII by Microvesicles Derived from Tumour Cells,” Nature Cell Biology, Vol. 10, 2008, pp. 619-624. http://dx.doi.org/10.1038/ncb1725
[23] K. Al-Nedawi, B. Meehan, R. S. Kerbel, A. C. Allison and J. Rak, “Endothelial Expression of Autocrine VEGF upon the Uptake of Tumor-Derived Microvesicles Containing Oncogenic EGFR,” The Proceedings of the National Academy of Sciences of the United States of America, Vol. 106, No. 10, 2009, pp. 3794-3799. http://dx.doi.org/10.1073/pnas.0804543106
[24] L. Pigati, S. C. Yaddanapudi, R. Iyengar, D. J. Kim, S. A. Hearn, D. Danforth, M. L. Hastings and D. M. Duelli, “Selective Release of microRNA Species from Normal and Malignant Mammary Epithelial Cells,” PLoS One, Vol. 5, No. 10, 2010, Article ID: E13515. http://dx.doi.org/10.1371/journal.pone.0013515
[25] J. Ratajczak, M. Wysoczynski, F. Hayek, A. Janowska-Wieczorek and M. Z. Ratajczak, “Membrane-Derived Microvesicles: Important and Underappreciated Mediators of Cell-to-Cell Communication,” Leukemia, Vol. 20, No. 9, 2006, pp. 1487-1495. http://dx.doi.org/10.1038/sj.leu.2404296
[26] M. Simons and G. Raposo, “Exosomes-Vesicular Carriers for Intercellular Communication,” Current Opinion in Cell Biology, Vol. 21, No. 4, 2009, pp. 575-581. http://dx.doi.org/10.1016/j.ceb.2009. 03.007
[27] S. Fujimi, H. Ogura, H. Tanaka, T. Koh, H. Hosotsubo, Y. Nakamori, Y. Kuwagata, T. Shimazu and H. Sugimoto, “Increased Production of Leukocyte Microparticles with Enhanced Expression of Adhesion Molecules from Activated Polymorphonuclear Leukocytes in Severely Injured Patients,” Journal of Trauma-Injury Infection & Critical Care, Vol. 54, No. 1, 2003, pp. 114-119; Discussion, pp. 119-120. http://dx.doi.org/10.1097/00005373-200301000-00014
[28] P. E. Rautou, A. S. Leroyer, B. Ramkhelawon, C. Devue, D. Duflaut, A. C. Vion, G. Nalbone, Y. Castier, G. Leseche, S. Lehoux, A. Tedgui and C. M. Boulanger, “Microparticles from Human Atherosclerotic Plaques Promote Endothelial ICAM-1-Dependent Monocyte Adhesion and Transendothelial Migration,” Circulation Research, Vol. 108, No. 3, 2011, pp. 335-343. http://dx.doi.org/10.1161/ CIRCRESAHA.110.237420
[29] J. B. Fishman, J. B. Rubin, J. V. Handrahan, J. R. Connor and R. E. Fine, “Receptor-Mediated Transcytosis of Transferrin across the Blood-Brain Barrier,” Journal of Neuroscience Research, Vol. 18, No. 2, 1987, pp. 299-304. http://dx.doi.org/10.1002/jnr.490180206
[30] J. Salo, P. Lehenkari, M. Mulari, K. Metsikk? and H. K. V??n?nen, “Removal of Osteoclast Bone Resorption Products by Transcytosis,” Science, Vol. 276, No. 5310, 1997, pp. 270-273.
[31] P. Tuma and A. Hubbard, “Transcytosis: Crossing Cellular Barriers,” Physiological Reviews, Vol. 83, No. 3, 2003, pp. 871-932.
[32] J. Nilsson, J. Skog, A. Nordstrand, V. Baranov, L. Mincheva-Nilsson, X. O. Breakefield and A. Widmark, “Prostate Cancer-Derived Urine Exosomes: A Novel Approach to Biomarkers for Prostate Cancer,” British Journal of Cancer, Vol. 100, No. 10, 2009, pp. 1603-1607. http://dx.doi.org/10.1038/sj.bjc. 6605058
[33] J. L. Spees, S. D. Olson, M. J. Whitney and D. J. Prockop, “Mitochondrial Transfer between Cells Can Rescue Aerobic Respiration,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 103, No. 5, 2006, pp. 1283-1288. http://dx.doi.org/10.1073/pnas.0510511103
[34] E. Bastida, A. Ordinas, G. Escolar and G. A. Jamieson, “Tissue Factor in Microvesicles Shed from U87MG Human Glioblastoma Cells Induces Coagulation, Platelet Aggregation, and Thrombogenesis,” Blood, Vol. 64, No. 1, 1984, pp. 177-184.
[35] J. L. Yu and J. W. Rak, “Shedding of Tissue Factor (TF)-Containing Microparticles Rather than Alternatively Spliced TF Is the Main Source of TF Activity Released from Human Cancer Cells,” Journal of Thrombosis and Haemostasis, Vol. 2, No. 11, 2004, pp. 2065-2067. http://dx.doi.org/10.1111/ j.1538-7836.2004.00972.x
[36] I. Del Conde, C. N. Shrimpton, P. Thiagarajan and J. A. López, “Tissue-Factor-Bearing Microvesicles Arise from Lipids Rafts and Fuse with Activated Platelets to Initiate Coagulation,” Blood, Vol. 106, No. 5, 2005, pp. 1604-1611. http://dx.doi.org/10.1182/blood-2004-03-1095
[37] B. S. Hong, J. H. Cho, H. Kim, E. J. Choi, S. Rho, J. Kim, J. H. Kim, D. S. Choi, Y. K. Kim, D. Hwang and Y. S. Gho, “Colorectal Cancer Cell-Derived Microvesicles Are Enriched in Cell Cycle-Related mRNAs That Promote Proliferation of Endothelial Cells,” BMC Genomics, Vol. 10, No. 556, 2009, pp. 1-13. http://dx.doi.org/10.1186/1471-2164-10-556
[38] N. Kosaka, H. Iguchi, Y. Yoshioka, F. Takeshita, Y. Matsuki and T. Ochiya, “Secretory Mechanisms and Intercellular Transfer of MicroRNAs in Living Cells,” Journal of Biological Chemistry, Vol. 285, No. 23, 2010, pp. 17442-17452.
[39] R. M. Johnstone, “Exosomes Biological Significance: A Concise Review,” Blood Cells, Molecules and Disease, Vol. 36, No. 2, 2006, pp. 315-321. http://dx.doi.org/10.1016/j.bcmd.2005.12.001
[40] G. Schiera, C. M. Di Liegro, P. Saladino, R. Pitti, G. Savettieri, P. Proia and I. Di Liegro, “Oligodendroglioma Cells Synthesize the Differentiation-Specific Linker Histone H1 and Release It into the Extracellular Environment through Shed Vesicles,” International Journal of Oncology, Vol. 43, No. 6, 2013, pp. 1771-1776.
[41] M. A. Antonyak, B. Li, L. K. Boroughs, J. L. Johnson, J. E. Druso, K. L. Bryant, D. A. Holowka and R. A. Cerione, “Cancer Cell-Derived Microvesicles Induce Transformation by Transferring Tissue Transglutaminase and Fibronectin to Recipient Cells,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 108, No. 12, 2011, pp. 4852-4857.
[42] A. Yuan, E. L. Farber, A. L. Rapoport, D. Tejada, R. Deniskin, N. B. Akhmedov and D. B. Farber, “Transfer of MicroRNAs by Embryonic Stem Cell Microvesicles,” PLoS ONE, Vol. 4, No. 3, 2009, Article ID: E4722. http://dx.doi.org/10.1371/journal.pone.0004722
[43] F. Collino, M. C. Deregibus, S. Bruno, L. Sterpone, G. Aghemo, L. Viltono, C. Tetta and G. Camussi, “Microvesicles Derived from Adult Human Bone Marrow and Tissue Specific Mesenchymal Stem Cells Shuttle Selected Pattern of MiRNAs,” PLoS ONE, Vol. 5, No. 7, 2010, Article ID: E11803.
[44] M. Guescini, S. Genedani, V. Stocchi and L. F. Agnati, “Astrocytes and Glioblastoma Cells Release Exosomes Carrying mtDNA,” Journal of Neural Transmission, Vol. 117, No. 1, 2010, pp. 1-4.
[45] K. E. van der Vos, L. Balaj, J. Skog and X. O. Breakefield, “Brain Tumor Microvesicles: Insights into Intercellular Communication in the Nervous System,” Cellular and Molecular Neurobiology, Vol. 31, No. 6, 2011, pp. 949-959. http://dx.doi.org/10.1007/s10571-011-9697-y
[46] R. Sasisekharan, Z. Shriver, G. Venkataraman and U. Narayanasami, “Roles of Heparan-Sulphate Glycosaminoglycans in Cancer,” Nature Reviews Cancer, Vol. 2, No. 7, 2002, pp. 521-528.
[47] F. Bianco, C. Perrotta, L. Novellino, M. Francolini, L. Riganti, E. Menna, L. Saglietti, E. H. Schuchman, R. Furlan, E. Clementi, M. Matteoli and C. Verderio, “Acid Sphingomyelinase Activity Triggers Microparticle Release from Glial Cells,” EMBO Journal, Vol. 28, No. 8, 2009, pp. 1043-1054.
[48] P. Caroni and M. E. Schwab, “Two Membrane Protein Fractions from Rat Central Myelin with Inhibitory Properties for Neurite Growth and Fibroblast Spreading,” Journal of Cell Biology, Vol. 106, No. 4, 1988, pp. 1281-1288. http://dx.doi.org/10.1083/jcb.106.4.1281
[49] J. W. Fawcett and H. M. Geller, “Regeneration in the CNS: Optimism Mounts,” Trends in Neurosciences, Vol. 21, No. 5, 1998, pp. 179-180. http://dx.doi.org/10.1016/S0166-2236(98)01241-7
[50] S. D’Agostino, M. Salamone, I. Di Liegro and M. L. Vittorelli, “Membrane Vesicles Shed by Oligodendroglioma Cells Induce Neuronal Apoptosis,” International Journal of Oncology, Vol. 29, No. 5, 2006, pp. 1075-1085.
[51] Q. Li, B. Qi, K. Oka, M. Shimakage, N. Yoshioka, H. Inoue, A. Hakura, K. Kodama, E. J. Stanbridge and M. Yutsudo, “Link of a New Type of Apoptosis-Inducing Gene ASY/NogoB to Human Cancer,” Oncogene, Vol. 20, No. 30, 2001, pp. 3929-3936. http://dx.doi.org/10.1038/sj.onc.1204536
[52] E. Tagami, Y. Eguchi, M. Kinoshita, M. Takeda and Y. Tsujimoto, “A Novel Protein, RTN-Xs, Interacts with both Bcl-XL and Bcl-2 on Endoplasmic Reticulum and Reduces Their Anti-Apoptotic Activity,” Oncogene, Vol. 19, No. 50, 2000, pp. 5736-5746. http://dx.doi.org/10.1038/sj.onc.1203948
[53] A. Lo Cicero, G. Schiera, P. Proia, P. Saladino, G. Savettieri, C. M. Di Liegro and I. Di Liegro, “Oligodendroglioma Cells Shed Microvesicles Which Contain TRAIL as Well as Molecular Chaperones and Induce Cell Death in Astrocytes,” International Journal of Oncology, Vol. 39, No. 6, 2011, pp. 1353-1357.
[54] A. Lo Cicero, I. Majkowska, H. Nagase, I. Di Liegro and L. Troeberg, “Microvesicles Shed by Oligodendroglioma Cells and Rheumatoid Synovial Fibroblasts Contain Aggrecanase Activity,” Matrix Biology: Journal of the International Society for Matrix Biology, Vol. 31, No. 4, 2012, pp. 229-233. http://dx.doi.org/10.1016/j.matbio.2012.02.005
[55] M. W. Graner, O. Alzate, A. M. Dechkovskaia, J. D. Keene, J. H. Sampson, D. A. Mitchell and D. D. Bigner, “Proteomic and Immunologic Analyses of Brain Tumor Exosomes,” FASEB Journal, Vol. 23, No. 5, 2009, pp. 1541-1557. http://dx.doi.org/10.1096/fj.08-122184
[56] L. M. Epple, S. G. Griffiths, A. M. Dechkovskaia, N. L. Dusto, J. White, R. J. Ouellette, T. J. Anchordoquy, L. T. Bemis and M. W. Graner, “Medulloblastoma Exosome Proteomics Yield Functional Roles for Extracellular Vesicles,” PloS ONE, Vol. 7, No. 7, 2012, Article ID: e42064. http://dx.doi.org/10.1371/ journal.pone.0042064
[57] A. J. Watt, W. D. Garrison and S. A. Duncan, “HNF4: A Central Regulator of Hepatocyte Differentiation and Function,” Hepatology, Vol. 37, No. 6, 2003, pp. 1249-1253. http://dx.doi.org/10.1053/jhep. 2003.50273
[58] N. L. Lazarevich, D. A. Shavochkina, D. I. Fleishman, I. F. Kustova, O. V. Morozova, E. S. Chuchuev and Y. I. Patyutko, “Deregulation of Hepatocyte Nuclear Factor 4 (HNF4) as a Marker of Epithelial Tumors Progression,” Experimental Oncology, Vol. 32, No. 3, 2010, pp. 167-171.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.