Synthesis and Physicochemical Characterization of Biodegradable Star-Shaped Poly Lactide-Co-Glycolide-β-Cyclodextrin Copolymer Nanoparticles Containing Albumin


The purposes of this research were to synthesize and characterize star-shaped poly lactide-co-glycolide-β-cyclo-dextrin (PLGA-β-CD) copolymer by reacting L-lactide, glycolide and β-cyclodextrin in the presence of stannous octoate as a catalyst. The structure of PLGA-β-CD copolymer was confirmed with 1H-NMR, 13C-NMR and FT-IR spectra. Albumin as a model peptide drug was encapsulated within nanoparticles made of PLGA-β-CD with a modified double emulsion method. Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) photomicrographs showed that the nanoparticles have the mean diameter within the range of 80 - 210 nm. Also they were almost spherical in shape. Effects of the experimental parameters, such as copolymer composition, copolymer concentration, and reaction temperature, on particular size and encapsulation efficiency were investigated.

Share and Cite:

Davaran, S. , Rezaei, A. , Alimohammadi, S. , Khandaghi, A. , Nejati-Koshki, K. , Nasrabadi, H. and Akbarzadeh, A. (2014) Synthesis and Physicochemical Characterization of Biodegradable Star-Shaped Poly Lactide-Co-Glycolide-β-Cyclodextrin Copolymer Nanoparticles Containing Albumin. Advances in Nanoparticles, 3, 14-22. doi: 10.4236/anp.2014.31003.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] S. P. Schwederman, M. Cardamone, M. R. Brandon, A. Klibanov and R. Langer, “Stability of Proteins and Their Delivery from Biodegradable Microspheres,” In: S. Cohen and H. Bernstein, Eds., Microparticulate Systems for the Delivery of Proteins and Vaccines, Marcel Dekker, New York, 1996, pp. 1-50.
[2] D. Blanco and M. J. Alonso, “Protein Encapsulation and Release from Poly(lactide-co-glycolide) Microspheres: Effect of the Protein and Polymer Properties and of the Co-Encapsulation of Surfactants,” European Journal of Pharmaceutics and Biopharmaceutics, Vol. 45, 1998, pp. 285-294.
[3] S. Alimohammadi, R. Salehi, N. Amini and S. Davaran, “Synthesis and Physicochemical Characterization of Biodegradable PLGA-Based Magnetic Nanoparticles Containing Amoxicilin,” Bulletin of the Korean Chemical Society, Vol. 33, No. 10, 2012, pp. 3225-3232.
[4] C.-H. Zheng, J.-Q. Gao, Y.-P. Zhang and W.-Q. Liang, “A Protein Delivery System: Biodegradable AlginateChitosan-Poly(lactic-co-glycolic acid) Composite Microspheres,” Biochemical and Biophysical Research Communications, Vol. 323, No. 4, 2004, pp. 1321-1327.
[5] H. B. Ravivarapu, K. Burton and P. K. Deluca, “Polymer and Microsphere Blending to alter the Release of a Peptide from PLGA Microspheres,” European Journal of Pharmaceutics and Biopharmaceutics, Vol. 50, No. 2, 2000, pp. 263-270.
[6] J. K. Li, N. Wang and X. S. Wu, “A Novel Biodegradable System Based on Gelatin Nanoparticles and Poly(lacticco-glycolic Acid) Microspheres for Protein and Peptide Drug Delivery,” Pharmacological Research, Vol. 86, 1997, pp. 891-895.
[7] M. Diwan and T. G. Park, “Pegylation Enhances Protein Stability Stability during Encapsulation in PLGA Microspheres,” Journal of Controlled Release, Vol. 73, No. 2-3, 2001, pp. 233-244.
[8] F. Karen, K. Griebenow, L. Hsieh, A. M. Klibanov and R. Langer, “FTIR Characterization of the Secondary Structure of Proteins Encapsulated with PLGA Microspheres,” Journal of Controlled Release, Vol. 58, No. 3, 1999, pp. 357-366.
[9] J. Kang and S. P. Schwendeman, “Comparison of the Effects of Mg(OH)2 and Sucrose on the Stability of Bovine Serum Albumin Encapsulated in Injectable Poly(d,llactide-co-glycolide) Implants,” Biomaterials, Vol. 23, No. 1, 2002, pp. 239-245.
[10] M. L. Gonzalez-Rodriguez, M. A. Holgado, C. SanchezLafuente, A. M. Rabasco and A. Fini, “Alginate/Chitosan Particulate Systems for Sodium Diclofenac Release,” International Journal of Pharmaceutics, Vol. 232, No. 1-2, 2002, pp. 225-234.
[11] X. Z. Shu and K. J. Zhu, “The Release Behavior of Brilliant Blue from Calcium-Alginate Gel Beads Coated by Chitosan: The Preparation Method Effect,” European Journal of Pharmaceutics and Biopharmaceutics, Vol. 53, No. 2, 2002, pp. 193-201.
[12] D. W. Lee, S. J. Hwang, J. B. Park and H. J. Park, “Preparation and Release Characteristics of Polymer-Coated and Blended Alginate Microspheres,” Journal of Microencapsulation, Vol. 20, 2003, pp. 179-192.
[13] M. Diwan and T. G. Park, “Stabilization of Recombinant Interferon-A by Pegylation for Encapsulation in PLGA Microspheres,” International Journal of Pharmaceutics, Vol. 252, No. 1-2, 2003, pp. 111-122.
[14] M. D. Blanco and M. J. Alonso, “Development and Characterization of Protein-Loaded Poly(lactide-co-glycolide) Nanospheres,” European Journal of Pharmaceutics and Biopharmaceutics, Vol. 43, No. 3, 1997, pp. 287-294.
[15] F. Lallemand, O. Felt-Baeyens, K. Besseghir, F. BeharCohen and R. Gurny, “Cyclosporine Adelivery to the Eye: A Pharmaceutical Challenge,” European Journal of Pharmaceutics and Biopharmaceutics, Vol. 56, No. 3, 2003, pp. 307-318.
[16] T. Loftsson, A. Magnudottir, M. Masson and J. F. Sigurjonsdottir, “Self-Association and Cyclodextrin Solubilization of Drugs,” Journal of Pharmaceutical Sciences, Vol. 91, No. 11, 2002, pp. 2307-2316.
[17] T. Loftsson, K. Matthiasson and M. Masson, “The Effect of Organic Salts on Cyclodextrin Solubilization of Drugs,” International Journal of Pharmaceutics, Vol. 262, No. 1-2, 2003, pp. 101-107.
[18] G. Orive, R. M. Hernandez, A. R. Gascon and J. L. Pedraz, “Micro and Nano Drug Delivery Systems in Cancer Therapy,” Cancer Therapy, Vol. 3, 2005, pp. 131-138.
[19] Y. P. Li, Y. Pei, X. Zhang, Z. Gu, Z. Zhou, W. Yuan, J. Zhou, J. Zhu and X. Gao, “PEGylated PLGA Nanoparticles as Protein Carriers, Synthesis, Preparation and Biodistribution in Rats,” Journal of Controlled Release, Vol. 71, No. 2, 2001, pp. 203-211.
[20] A. Ahmadi, H. Shirazi, N. Pourbagher, A. Akbarzadeh and K. Omidfar, “An Electrochemical Immunosensor for Digoxin Using Core-Shell Gold Coated Magnetic Nanoparticles as Labels,” Molecular Biology Reports, 2014, Epub Ahead of Print.
[21] K. Nejati-Koshki, A. Akbarzadeh, M. Pourhasan-Moghadam, A. Abhari and H. Dariushnejad, “Inhibition of Leptin and Leptin Receptor Gene Expression by Silibinin-Curcumin Combination,” Asian Pacific Journal of Cancer Prevention, Vol. 14, No. 11, 2013, pp. 6595-6599.
[22] M. Pourhassan-Moghaddam, M. Rahmati-Yamchi, A. Akbarzadeh, H. Daraee, K. Nejati-Koshki, Y. Hanifehpour and S. W. Joo, “Protein Detection through Different Platforms of Immuno-Loop-Mediated Isothermal Amplification,” Nanoscale Research Letters, Vol. 8, No. 8, 2013, p. 485.
[23] M. Mollazade, K. Nejati-Koshki, A. Akbarzadeh, Y. Hanifehpour, N. Zarghami and S. W. Joo, “PAMAM Dendrimers Arugment Inhibitory Effect of Curcumin on Cancer Cell Proliferation: Possible Inhibition of Telomerase,” Asian Pacific Journal of Cancer Prevention, Vol. 14, No. 11, 2013, pp. 6925-6928.
[24] R. Rezaei-Sadabady, N. Zarghami, A. Barzegar, A. Eidi, A. Akbarzadeh and M. Rezaei-Tavirani, “Studies of the Relationship between Structure and Antioxidant Activity in Interesting Systems, Including Tyrosol, Hydroxytyrosol Derivatives Indicated by Quantum Chemical Calculations,” Soft, Vol. 2, No. 2, 2013, pp. 13-18.
[25] Y. J. Hu, Y. Liu, Z. B. Pi and S. S. Qu, “Interaction of Cromolyn Sodium with Human Serum Albumin: A Fluorescence Quenching Study,” Bioorganic & Medicinal Chemistry, Vol. 13, No. 24, 2005, pp. 6609-6614.
[26] E. Alarcon, A. M. Edwards, A. Aspee, F. E. Moran, C. D. Borsarelli, E. A. Lissi, D. Gonzalez-Nilo, H. Poblete and J. C. Scaiano, “Photophysics and Photochemistry of Dyes Bound to Human Serum Albumin Are Determined by the Dye Localization,” Photochemical & Photobiological Sciences, Vol. 9, No. 1, 2010, pp. 93-102.
[27] A. Valizadeh, H. Mikaeili, M. Samiei, S. M. Farkhani, N. Zarghami, M. Kouhi, A. Akbarzadeh and S. Davaran, “Quantum Dots: Synthesis, Bioapplications, and Toxicitynanoscale,” Research Letters, Vol. 7, 2012, p. 480.
[28] A. Akbarzadeh, M. Samiei, S. W. Joo, M. Anzaby, Y. Hanifehpour, H. T. Nasrabadi and S. Davaran, “Synthesis, Characterization and in Vitro Studies of AdriamaycinEncapsulated Magnetic Nanoparticles Grafted to Smart Copolymers on A549 Lung Cancer Cell Line,” Journal of Nanobiotechnology, Vol. 10, No. 1, 2012, p. 46.
[29] A. Akbarzadeh, R. Rezaei-Sadabady, S. Davaran, S. W. Joo, N. Zarghami, Y. Hanifehpour, M. Samiei, M. Kouhi and K. Nejati-Koshki, “Liposome: Classification, Preparation, and Applications,” Nanoscale Research Letters, Vol. 8, No. 1, 2013, p. 102.
[30] A. Akbarzadeh, N. Zarghami, H. Mikaeili, D. Asgari, A. M. Goganian, K. Khaksar, S. Mohammad and D. Soodabeh, “Synthesis, Characterization and in Vitro Evaluation of Novel Polymer-Coated Magnetic Nanoparticles for Controlled Delivery of Adriamaycin,” Nanotechnology, Science and Applications, Vol. 5, 2012, pp. 1-13.
[31] A. Akbarzadeh, H. Mikaeili, N. Zarghami, R. Mohammad, A. Bsrkhordari abd S. Davaran, “Preparation and In-Vitro Evaluation of Adriamaycin-Encapsulated Fe3O4 Magnetic Nanoparticles Modified with Biocompatible Copolymer,” International Journal of Nanomedicine, Vol. 7, 2012, pp. 1-16.
[32] A. Akbarzadeh, M. Samiei and S. Davaran, “Magnetic Nanoparticles: Preparation, Physical Properties, and Applications in Biomedicine,” Nanoscale Research Letters, Vol. 7, No. 1, 2012, p. 144.

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.