Laplace Transform Method for Unsteady Thin Film Flow of a Second Grade Fluid through a Porous Medium

Abstract

In this article, we have effectively used the Numerical Inversion of Laplace transform to study the time-dependent thin film flow of a second grade fluid flowing down an inclined plane through a porous medium. The solution to the governing equation is obtained by using the standard Laplace transform. However, to transform the obtained solutions from Laplace space back to the original space, we have used the Numerical Inversion of Laplace transform. Graphical results have been presented to show the effects of different parameters involved and to show how the fluid flow evolves with time.

Share and Cite:

Ali, M. and Awais, M. (2014) Laplace Transform Method for Unsteady Thin Film Flow of a Second Grade Fluid through a Porous Medium. Journal of Modern Physics, 5, 103-106. doi: 10.4236/jmp.2014.53017.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] W. T. Weeks, Journal of the ACM, Vol. 13, 1966, pp. 419-429. http://dx.doi.org/10.1145/321341.321351
[2] J. Valsa and L. Brancik, International Journal of Numerical Modelling, Vol. 11, 1998, pp. 153-166.
http://dx.doi.org/10.1002/(SICI)1099-1204(199805/06)11:3<153::AID-JNM299>3.0.CO;2-C
[3] F. R. de Hoog, J. H. Knight and A. N. Stokes, SIAM Journal on Scientific Computing, Vol. 3, 1982, pp. 357-366.
[4] A. Talbot, Journal of Applied Mathematics, Vol. 23, 1979, pp. 97-120.
[5] B. Raftari, F. Parvaneh and K. Vajravelu, Energy, Vol. 59, 2013, pp. 625-632.
http://dx.doi.org/10.1016/j.energy.2013.07.054
[6] Y. D. Yao and Y. H. Liu, Nonlinear Analysis: Real World Applications, Vol. 11, 2010, pp. 4442-4450.
http://dx.doi.org/10.1016/j.nonrwa.2010.05.027
[7] M. E. Erdogan and C. E. Imrak, International Journal of Engineering Science, Vol. 48, 2010, pp. 1225-1232.
http://dx.doi.org/10.1016/j.ijengsci.2010.06.007
[8] M. E. Erdogan and C. E. Imrak, International Journal of Non-Linear Mechanics, Vol. 46, 2011, pp. 986-989.
http://dx.doi.org/10.1016/j.ijnonlinmec.2011.04.013
[9] M. E. Erdogan and C. E. Imrak, Applied Mathematical Modelling, Vol. 31, 2007, pp. 170-180.
http://dx.doi.org/10.1016/j.apm.2005.08.019
[10] P. Huang and Z. Li, Journal of Tribology, Vol. 124, 2002, pp. 547-552. http://dx.doi.org/10.1115/1.1467636
[11] S. Miladinova, G. Lebon and E. Toshev, Journal of Non-Newtonian Fluid Mechanics, Vol. 122, 2004, pp. 69-78.
http://dx.doi.org/10.1016/j.jnnfm.2004.01.021
[12] R. Zhang and X. Li, Journal of Engineering Mathematics, Vol. 51, 2005, pp. 1-13.
http://dx.doi.org/10.1007/s10665-004-1342-z
[13] A. M. Siddiqui, R. Mahmood and Q. K. Ghori, Physics Letters A, Vol. 352, 2006, pp. 404-410.
http://dx.doi.org/10.1016/j.physleta.2005.12.033
[14] A. M. Siddiqui, M. Ahmed and Q. K. Ghori, Chaos Solitons Fractals, Vol. 33, 2007, pp. 1006-1016.
http://dx.doi.org/10.1016/j.chaos.2006.01.101
[15] P. Huang and Z. Li, Journal of Tribology, Vol. 124, 2002, pp. 547-552. http://dx.doi.org/10.1115/1.1467636
[16] Q. Z. Gan and L. Z. Ji, Applied Mathematics and Mechanics, Vol. 8, 2006, pp. 655-665.
http://dx.doi.org/10.1007/BF02458263
[17] C. I. Chen, Communications in Nonlinear Science and Numerical Simulation, Vol. 12, 2007, pp. 760-775.
http://dx.doi.org/10.1016/j.cnsns.2005.04.010
[18] M. Sajid, M. Awais, S. Nadeem and T. Hayat, Computers and Mathematics with Applications, Vol. 56, 2008, pp. 2019-2026. http://dx.doi.org/10.1016/j.camwa.2008.04.022
[19] S. Nadeem and M. Awais, Physics Letters A, Vol. 372, 2008, pp. 4965-4972.
http://dx.doi.org/10.1016/j.physleta.2008.05.048
[20] S. Nadeem and M. Awais, Journal of Porous Media, Vol. 13, 2010, pp. 973-980.
http://dx.doi.org/10.1615/JPorMedia.v13.i11.30
[21] J. E. Dunn and R. L. Fosdick, Archive for Rational Mechanics and Analysis, Vol. 56, 1974, pp. 191-252.
http://dx.doi.org/10.1007/BF00280970

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.