Share This Article:

Autism and Schizophrenia Are Disorders of Evolvability

Abstract Full-Text HTML XML Download Download as PDF (Size:281KB) PP. 161-183
DOI: 10.4236/ojmp.2014.32019    3,768 Downloads   6,380 Views   Citations

ABSTRACT

Autism and schizophrenia are of particular interest because new developments in genomic medicine address three aspects of the conditions that have been difficult, thus far, to resolve: their heterogeneity, from subclinical manifestations to disorders that are gravely disabling; the genetic basis for their high heritability; and the persistence of disorders in light of their high heritability but low reproductive success they convey. The origins of autism and schizophrenia, their persistence and heterogeneity can be understood by integrating information from genomic science, the social brain and the evolution of socialization, intelligence and language. Both conditions are associated with structural changes in the genome, specifically copy number variants. Such systemic mutations contribute to an unstable and mutable genome and have been especially notable during primate > hominid evolution. Along with mechanisms that affect gene expression, they contribute to a genome characterized by variability and evolvability. A dynamic and variable genome is reflected by a high degree of phenotypic variation. This, in turn, is reflected in the diversity of neurodevelopmental disorders, in particular autism and schizophrenia. Evolvability is more than a dispositional concept, it is a trait in its own right. In the special case of hominid evolution, evolvability has been both an independent and a dependent variable. Evolution of the modern human brain seems to have arisen during the cultivation of unstable regions in the genome that were conducive to a high degree of inter-individual and inter-generational variation. The consequence of even small aberrations in evolutionary processes and phenotypic variations is most likely to be manifest in the functions of the social brain: self-referential processing, perspective taking and the dual components of empathy; also language as well as intelligence itself. The trade-off is a dynamic genome that can rearrange itself in untoward ways and may be felt in one or more of the above functions. The occurrence of neurodevelopmental disorders ranging from the learning disabilities and ADD to autism and schizophrenia, are epiphenomenal to a genome that is unstable and mutable. The selective advantage of such a genome is the runaway evolution of positive prosocial and intellective traits. If there is a core to the pathology that emerges in autism and schizophrenia, it is at the genomic level, and is probably related to the unique evolvability of the human genome. Genetic transformation as an agent of evolvability is necessarily associated with untoward consequences. Just as point mutations may have deleterious effects, so do genomic transformations. The neurodevelopmental disorders, therefore, are the consequence of evolvability.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

C. Thomas Gualtieri, "Autism and Schizophrenia Are Disorders of Evolvability," Open Journal of Medical Psychology, Vol. 3 No. 2, 2014, pp. 161-183. doi: 10.4236/ojmp.2014.32019.

References

[1] [1] M. Kirschner and J. Gerhart, “Evolvability,” Proceedings of the National Academy of Sciencesof the United States of America, Vol. 95, No. 15, 1998, pp. 8420-8427. http://dx.doi.org/10.1073/pnas.95.15.8420
[2] A. G. Jones, S. J. Arnold and R. Bürger, “The Mutation Matrix and the Evolution of Evolvability,” Evolution: International Journal of Organic Evolution, Vol. 61, No. 4, 2007, pp. 727-745. http://dx.doi.org/10.1111/j.1558-5646.2007.00071.x
[3] C. A. Ross, R. L. Margolis, S. A. J. Reading, M. Pletnikov and J. T. Coyle, “Neurobiology of Schizophrenia,” Neuron, Vol. 52, No. 1, 2006, pp. 139-153. http://dx.doi.org/10.1016/j.neuron.2006.09.015
[4] A. Lieberman, “Is Schizophrenia a Neurodegenerative Disorder? A Clinical and Neurobiological Perspective,” Biological Psychiatry, Vol. 46, No. 6, 1999, pp. 729-739. http://dx.doi.org/10.1016/S0006-3223(99)00147-X
[5] S. B. Powell, “Models of Neurodevelopmental Abnormalities in Schizophrenia,” Current Topics in Behavioral Neurosciences, Vol. 4, 2010, pp. 435-481. http://dx.doi.org/10.1007/7854_2010_57
[6] J. L. Rapoport, A. M. Addington, S. Frangou and M. R. C. Psych, “The Neurodevelopmental Model of Schizophrenia: Update 2005,” Molecular Psychiatry, Vol. 10, No. 5, 2005, pp. 434-449. http://dx.doi.org/10.1038/sj.mp.4001642
[7] S. H. Fatemi and T. D. Folsom, “The Neurodevelopmental Hypothesis of Schizophrenia, Revisited,” Schizophrenia Bulletin, Vol. 35, No. 3, 2009, pp. 528-548. http://dx.doi.org/10.1093/schbul/sbn187
[8] J. R. Lupski, “Genomic Disorders: Structural Features of the Genome Can Lead to DNA Rearrangements and Human Disease Traits,” Trends in Genetics: TIG, Vol. 14, No. 10, 1998, pp. 417-422. http://dx.doi.org/10.1016/S0168-9525(98)01555-8
[9] A. S. Kondrashov, “Direct Estimates of Human per Nucleotide Mutation Rates at 20 Loci Causing Mendelian Diseases,” Human Mutation, Vol. 21, No. 1, 2003, pp. 12-27. http://dx.doi.org/10.1002/humu.10147
[10] P. Stankiewicz and J. R. Lupski, “Genome Architecture, Rearrangements and Genomic Disorders,” Trends in Genetics: TIG, Vol. 18, No. 2, 2002, pp. 74-82. http://dx.doi.org/10.1016/S0168-9525(02)02592-1
[11] J. A. Lee and J. R. Lupski, “Genomic Rearrangements and Gene Copy-Number Alterations as a Cause of Nervous System Disorders,” Neuron, Vol. 52, No. 1, 2006, pp. 103-121. http://dx.doi.org/10.1016/j.neuron.2006.09.027
[12] J. R. Lupski, “Genomic Rearrangements and Sporadic Disease,” Nature Genetics, Vol. 39, No. 7, 2007, pp. S43-S47. http://dx.doi.org/10.1038/ng2084
[13] L. G. Shaffer, et al., “The Discovery of Microdeletion Syndromes in the Post-Genomic Era: Review of the Methodology and Characterization of a New 1q41q42 Micro-deletion Syndrome,” Genetics in Medicine: Official Journal of the American College of Medical Genetics, Vol. 9, No. 9, 2007, pp. 607-616.
[14] C. M. B. Carvalho, F. Zhang and J. R. Lupski, “Genomic Disorders: A Window into Human Gene and Genome Evolution,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 107, Supplement 1, 2010, pp. 1765-1771. http://dx.doi.org/10.1073/pnas.0906222107
[15] J. R. Lupski, R. M. de Oca-Luna, S. Slaugenhaupt, P. T. Liu, V. Guzzetta, B. J. Trask, O. Saucedo-Cardenas, D. F. Barker, J. M. Killian, C. A. Garcia, A. Chakravarti and P. I. Patel, “DNA Duplication Associated with Charcot-Marie-Tooth Disease Type 1A,” Cell, Vol. 66, No. 2, 1991, pp. 219-232. http://dx.doi.org/10.1016/0092-8674(91)90613-4
[16] E. M. Morrow, “Genomic Copy Number Variation in Disorders of Cognitive Development,” Journal of the American Academy of Child and Adolescent Psychiatry, Vol. 49, No. 11, 2010, pp. 1091-1104. http://dx.doi.org/10.1016/j.jaac.2010.08.009
[17] J. R. Lupski, “Genomic Disorders: Structural Features of the Genome Can Lead to DNA Rearrangements and Human Disease Traits,” Trends in Genetics, Vol. 14, No. 10, 1998, pp. 417-422.
[18] E. E. Eichler, N. Archidiacono and M. Rocchi, “CAGGG Repeats and the Pericentromeric Duplication of the Hominoid Genome,” Genome Research, Vol. 9, No. 11, 1999, pp. 1048-1058. http://dx.doi.org/10.1101/gr.9.11.1048
[19] J. A. Lee and J. R. Lupski, “Genomic Rearrangements and Gene Copy-Number Alterations as a Cause of Nervous System Disorders,” Neuron, Vol. 52, No. 1, 2006, pp. 103-121.
[20] R. Redon, et al., “Global Variation in Copy Number in the Human Genome,” Nature, Vol. 444, No. 7118, 2006, pp. 444-454. http://dx.doi.org/10.1038/nature05329
[21] L. Feuk, A. R. Carson and S. W. Scherer, “Structural Variation in the Human Genome,” Nature Reviews. Genetics, Vol. 7, No. 2, 2006, pp. 85-97. http://dx.doi.org/10.1038/nrg1767
[22] S. Levy, G. Sutton, P. C. Ng, et al., “The Diploid Genome Sequence of an Individual Human,” PLoS Biology, Vol. 5, No. 10, 2007, Article ID: e254. http://dx.doi.org/10.1371/journal.pbio.0050254
[23] D. A. Wheeler, et al., “The Complete Genome of an Individual by Massively Parallel DNA Sequencing,” Nature, Vol. 452, No. 7189, 2008, pp. 872-876. http://dx.doi.org/10.1038/nature06884
[24] M. E. Hurles, E. T. Dermitzakis and C. Tyler-Smith, “The Functional Impact of Structural Variation in Humans,” Trends in Genetics: TIG, Vol. 24, No. 5, 2008, pp. 238-245. http://dx.doi.org/10.1016/j.tig.2008.03.001
[25] B. E. Stranger, et al., “Relative Impact of Nucleotide and Copy Number Variation on Gene Expression Phenotypes,” Science, Vol. 315, No. 5813, 2007, pp. 848-853. http://dx.doi.org/10.1126/science.1136678
[26] J. A. Buchanan and S. W. Scherer, “Contemplating Effects of Genomic Structural Variation,” Genetics in Medicine: Official Journal of the American College of Medical Genetics, Vol. 10, No. 9, 2008, pp. 639-647.
[27] D. F. Conrad, et al., “Origins and Functional Impact of Copy Number Variation in the Human Genome,” Nature, Vol. 464, No. 7289, 2010, pp. 704-712. http://dx.doi.org/10.1038/nature08516
[28] J. A. Bailey and E. E. Eichler, “Primate Segmental Duplications: Crucibles of Evolution, Diversity and Disease,” Nature Reviews. Genetics, Vol. 7, No. 7, 2006, pp. 552-564. http://dx.doi.org/10.1038/nrg1895
[29] M. E. Feder, “Evolvability of Physiological and Biochemical Traits: Evolutionary Mechanisms Including and beyond Single-Nucleotide Mutation,” Journal of Experimental Biology, Vol. 210, No. 9, 2007, pp. 1653-1660. http://dx.doi.org/10.1242/jeb.02725
[30] S. Ohno, U. Wolf and N. B. Atkin, “Evolution from Fish to Mammals by Gene Duplication,” Hereditas, Vol. 59, No. 1, 1968, pp. 169-187. http://dx.doi.org/10.1111/j.1601-5223.1968.tb02169.x
[31] K. Inoue, et al., “The 1.4-Mb CMT1A Duplication/HNPP Deletion Genomic Region Reveals Unique Genome Architectural Features and Provides Insights into the Recent Evolution of New Genes,” Genome Research, Vol. 11, No. 6, 2001, pp. 1018-1033. http://dx.doi.org/10.1101/gr.180401
[32] C. M. B. Carvalho, F. Zhang and J. R. Lupski, “Genomic Disorders: A Window into Human Gene and Genome Evolution,” Proceedings of the National Academy of Sciences of the United States of America, Vol.107, Supplement 1, 2010.
[33] E. H. Cook Jr. and S. W. Scherer, “Copy-Number Variations Associated with Neuropsychiatric Conditions,” Nature, Vol. 455, No. 7215, 2008, pp. 919-923. http://dx.doi.org/10.1038/nature07458
[34] J. Sebat, D. L. Levyand S. E. McCarthy, “Rare Structural Variants in Schizophrenia: One Disorder, Multiple Mutations; One Mutation, Multiple Disorders,” Trends in Genetics, Vol. 25, No. 12, 2009, pp. 528-535. http://dx.doi.org/10.1016/j.tig.2009.10.004
[35] E. H. Cook Jr. and S. W. Scherer, “Copy-Number Variations Associated with Neuropsychiatric Conditions,” Nature, Vol. 455, No. 7215, 2008, pp. 919-923.
[36] M. L. Jacquemont, et al., “Array-Based Comparative Genomic Hybridisation Identifies High Frequency of Cryptic Chromosomal Rearrangements in Patients with Syndromic Autism Spectrum Disorders,” Journal of Medical Genetics, Vol. 43, No. 11, 2006, pp. 843-849. http://dx.doi.org/10.1136/jmg.2006.043166
[37] J. E. Chubb, N. J. Bradshaw, D. C. Soares, D. J. Porteous and J. K. Millar, “The DISC Locus in Psychiatric Illness,” Molecular Psychiatry, Vol. 13, No. 1, 2008, pp. 36-64. http://dx.doi.org/10.1038/sj.mp.4002106
[38] J. Sebat, et al., “Strong Association of de Novo Copy Number Mutations with Autism,” Science, Vol. 316, No. 5823, 2007, pp. 445-449. http://dx.doi.org/10.1126/science.1138659
[39] D. Pinto, et al., “Functional Impact of Global Rare Copy Number Variation in Autism Spectrum Disorder,” Nature, Vol. 466, No. 7304, 2010, pp. 368-372. http://dx.doi.org/10.1038/nature09146
[40] International Schizophrenia Consortium, “Rare Chromosomal Deletions and Duplications Increase Risk of Schizophrenia,” Nature, Vol. 455, No. 7210, 2008, pp. 237-241. http://dx.doi.org/10.1038/nature07239
[41] O. Ousley, K. Rockers, M. L. Dell, K. Coleman and J. F. Cubells, “A Review of Neurocognitive and Behavioral Profiles Associated with 22q11 Deletion Syndrome: Implications for Clinical Evaluation and Treatment,” Current Psychiatry Reports, Vol. 9, No. 2, 2007, pp. 148-158. http://dx.doi.org/10.1007/s11920-007-0085-8
[42] D. Gothelf, et al., “Genetic, Developmental, and Physical Factors Associated with Attention Deficit Hyperactivity Disorder in Patients with Velocardiofacial Syndrome,” American Journal of Medical Genetics. Part B: Neuro-psychiatric Genetics: The Official Publication of the International Society of Psychiatric Genetics, Vol. 126B, No. 1, 2004, pp. 116-121. http://dx.doi.org/10.1002/ajmg.b.20144
[43] T. Walsh, et al., “Rare Structural Variants Disrupt Multiple Genes in Neurodevelopmental Pathways in Schizophrenia,” Science, Vol. 320, No. 5875, 2008, pp. 539-543. http://dx.doi.org/10.1126/science.1155174
[44] H. Stefansson, et al., “Large Recurrent Microdeletions Associated with Schizophrenia,” Nature, Vol. 455, No. 7210, 2008, pp. 232-236. http://dx.doi.org/10.1038/nature07229
[45] N. Brunetti-Pierri, et al., “Recurrent Reciprocal 1q21.1 Deletions and Duplications Associated with Microcephaly or Macrocephaly and Developmental and Behavioral Abnormalities,” Nature Genetics, Vol. 40, No. 12, 2008, pp. 1466-1471. http://dx.doi.org/10.1038/ng.279
[46] H. C. Mefford, et al., “Recurrent Rearrangements of Chromosome 1q21.1 and Variable Pediatric Phenotypes,” The New England Journal of Medicine, Vol. 359, No. 16, 2008, pp. 1685-1699. http://dx.doi.org/10.1056/NEJMoa0805384
[47] I. Helbig, et al., “15q13.3 Microdeletions Increase Risk of Idiopathic Generalized Epilepsy,” Nature Genetics, Vol. 41, No. 2, 2009, pp. 160-162. http://dx.doi.org/10.1038/ng.292
[48] L. M. Dibbens, et al., “Familial and Sporadic 15q13.3 Microdeletions in Idiopathic Generalized Epilepsy: Precedent for Disorders with Complex Inheritance,” Human Molecular Genetics, Vol. 18, No. 19, 2009, pp. 3626-3631. http://dx.doi.org/10.1093/hmg/ddp311
[49] A. J. Sharp, et al., “Discovery of Previously Unidentified Genomic Disorders from the Duplication Architecture of the Human Genome,” Nature Genetics, Vol. 38, No. 9, 2006, pp. 1038-1042. http://dx.doi.org/10.1038/ng1862
[50] L. A. Weiss, et al., “Association between Microdeletion and Microduplication at 16p11.2 and Autism,” The New England Journal of Medicine, Vol. 358, No. 7, 2008, pp. 667-675. http://dx.doi.org/10.1056/NEJMoa075974
[51] T. Walsh, et al., “Rare Structural Variants Disrupt Multiple Genes in Neurodevelopmental Pathways in Schizophrenia,” Science, Vol. 320, No. 5875, 2008, pp. 539-543.
[52] M. Doornbos, et al., “Nine Patients with a Microdeletion 15q11.2 between Breakpoints 1 and 2 of the Prader-Willi Critical Region, Possibly Associated with Behavioural Disturbances,” European Journal of Medical Genetics, Vol. 52, No. 2-3, 2009, pp. 108-115. http://dx.doi.org/10.1016/j.ejmg.2009.03.010
[53] S. Ohno, U. Wolf and N. B. Atkin, “Evolution from Fish to Mammals by Gene Duplication,” Hereditas, Vol. 59, No. 1, 1968, pp. 167-187.
[54] J. Sebat, et al., “Large-Scale Copy Number Polymorphism in the Human Genome,” Science, Vol. 305, No. 5683, 2004, pp. 525-528. http://dx.doi.org/10.1126/science.1098918
[55] E. M. Morrow, “Genomic Copy Number Variation in Disorders of Cognitive Development,” Journal of the American Academy of Child and Adolescent Psychiatry, Vol. 49, No. 11, 2010, pp. 1091-1104.
[56] A. J. Iafrate, L. Feuk, M. N. Rivera, M. L. Listewnik, P. K. Donahoe, Y. Qi, S. W. Scherer and C. Lee, “Detection of Large-Scale Variation in the Human Genome,” Nature Genetics, Vol. 36, No. 9, 2004, pp. 949-951. http://dx.doi.org/10.1038/ng1416
[57] E. M. Morrow, “Genomic Copy Number Variation in Disorders of Cognitive Development,” Journal of the American Academy of Child and Adolescent Psychiatry, Vol. 49, No. 11, 2010, pp. 1091-1104.
[58] J. R. Lupski, “Genomic Rearrangements and Sporadic Disease,” Nature Genetics, Vol. 39, 2007, pp. S43-S47.
[59] J. R. Lupski, “Genomic Rearrangements and Sporadic Disease,” Nature Genetics, Vol. 39, 2007, pp. S43-S47.
[60] T. Marques-Bonet and E. E. Eichler, “The Evolution of Human Segmental Duplications and the Core Duplicon Hypothesis,” Cold Spring Harbor Symposia on Quantitative Biology, Vol. 74, 2009, pp. 355-362. http://dx.doi.org/10.1101/sqb.2009.74.011
[61] S. Ohno, U. Wolf and N. B. Atkin, “Evolution from Fish to Mammals by Gene Duplication,” Hereditas, Vol. 59, No. 1, 1968, pp. 167-187.
[62] J. M. Chen, D. N. Cooper, C. Férec, H. Kehrer-Sawatzkif and G. P. Patrinos, “Genomic Rearrangements in Inherited Disease and Cancer,” Seminars in Cancer Biology, Vol. 20, No. 4, 2010, pp. 222-233. http://dx.doi.org/10.1016/j.semcancer.2010.05.007
[63] J. Sebat, et al., “Large-Scale Copy Number Polymorphism in the Human Genome,” Science, Vol. 305, No. 5683, 2004, pp. 525-528.
[64] N. Burnashev and A. Rozov, “Genomic Control of Receptor Function,” Cellular and Molecular Life Sciences: CMLS, Vol. 57, No. 11, 2000, pp. 1499-1507. http://dx.doi.org/10.1007/PL00000634
[65] J. J. Yunis and O. Prakash, “The Origin of Man: A Chromosomal Pictorial Legacy,” Science, Vol. 215, No. 4539, 1982, pp. 1525-1530. http://dx.doi.org/10.1126/science.7063861
[66] D. E. Wildman, M. Uddin, G. Z. Liu, L. I. Grossman and M. Goodman, “Implications of Natural Selection in Shaping 99.4% Nonsynonymous DNA Identity between Humans and Chimpanzees: Enlarging Genus Homo,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 100, No. 12, 2003, pp. 7181-7188. http://dx.doi.org/10.1073/pnas.1232172100
[67] T. Marques-Bonet, S. Girirajan and E. E. Eichler, “The Origins and Impact of Primate Segmental Duplications,” Trends in Genetics: TIG, Vol. 25, No. 10, 2009, pp. 443-454. http://dx.doi.org/10.1016/j.tig.2009.08.002
[68] J. J. Yunis and O. Prakash, “The Origin of Man: A Chromosomal Pictorial Legacy,” Science, Vol. 215, No. 4539, 1982, pp. 1525-1530.
[69] A. Jauch, J. Wienberg, R. Stanyon, N. Arnold, S. Tofanelli, T. Ishida and T. Cremer, “Reconstruction of Genomic Rearrangements in Great Apes and Gibbons by Chromosome Painting.,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 89, No. 18, 1992, pp. 8611-8615. http://dx.doi.org/10.1073/pnas.89.18.8611
[70] J. L. Nahon, “Birth of ‘Human-Specific’ Genes during Primate Evolution,” Genetica, Vol. 118, No. 2-3, 2003, pp. 193-208. http://dx.doi.org/10.1023/A:1024157714736
[71] M. Kirschner and J. Gerhart, “Evolvability,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 95, No. 15, 1998, pp. 8420-8427.
[72] K. Inoue, et al., “The 1.4-Mb CMT1A Duplication/HNPP Deletion Genomic Region Reveals Unique Genome Architectural Features and Provides Insights into the Recent Evolution of New Genes,” Genome Research, Vol. 11, No. 6, 2001, pp. 1018-1033.
[73] K. Inoue and J. R. Lupski, “Molecular Mechanisms for Genomic Disorders,” Annual Review of Genomics and Human Genetics, Vol. 3, 2002, pp. 199-242. http://dx.doi.org/10.1146/annurev.genom.3.032802.120023
[74] R. V. Samonte and E. E. Eichler, “Segmental Duplications and the Evolution of the Primate Genome,” Nature Reviews. Genetics, Vol. 3, No. 1, 2002, pp. 65-72. http://dx.doi.org/10.1038/nrg705
[75] P. Stankiewicz and J. R. Lupski, “Genome Architecture, Rearrangements and Genomic Disorders,” Trends in Genetics, Vol. 18, No. 2, 2002, pp. 74-82.
[76] A. Clark, “Being There: Bringing Brain, Body and World Together,” MIT Press, Cambridge, 1997.
[77] S. Pinker, “The Cognitive Niche: Coevolution of Intelligence, Sociality, and Language,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 107, Suppl. 2, 2010, pp. 8993-8999. http://dx.doi.org/10.1073/pnas.0914630107
[78] R. I. M. Dunbar, “The Social Brain Hypothesis,” Brain, Vol. 9, 1998, p. 10.
[79] L. C. Aiello and P. Wheeler, “The Expensive Tissue Hypothesis. the Brain and the Digestive System in Human Evolution,” Current Anthropology, Vol. 36, No. 2, 1995, pp. 199-221. http://dx.doi.org/10.1086/204350
[80] E. Fehr and U. Fischbacher, “The Nature of Human Altruism,” Nature, Vol. 425, No. 6960, 2003, pp. 785-791. http://dx.doi.org/10.1038/nature02043
[81] L. Willerman, R. Schultz, J. N. Rutledge and E. D. Bigler, “In Vivo Brain Size and Intelligence,” Intelligence, Vol. 15, No. 2, 1991, pp. 223-228. http://dx.doi.org/10.1016/0160-2896(91)90031-8
[82] P. Lindenfors, C. L. Nunn and R. A. Barton, “Primate Brain Architecture and Selection in Relation to Sex,” BMC Biology, Vol. 5, 2007, p. 20. http://dx.doi.org/10.1186/1741-7007-5-20
[83] R. I. M. Dunbar and S. Shultz, “Evolution in the Social Brain,” Science, Vol. 317, No. 5843, 2007, pp. 1344-1347. http://dx.doi.org/10.1126/science.1145463
[84] M. R. A. Chance and A. P. Mead, “Social Behaviour and Primate Evolution,” Symposia of the Society for Experimental Biology, Vol. 7, 1953, pp. 395-439.
[85] R. I. M. Dunbar and S. Shultz, “Evolution in the Social Brain,” Science, Vol. 317, No. 5843, 2007, pp. 1344-1347.
[86] R. I. M. Dunbar and S. Shultz, “Evolution in the Social Brain,” Science, Vol. 317, No. 5843, 2007, pp. 1344-1347.
[87] S. Shultz and R. I. M. Dunbar, “The Evolution of the Social Brain: Anthropoid Primates Contrast with Other Vertebrates,” Proceedings of the Royal Society B: Biological Sciences, Vol. 274, No. 1624, 2007, pp. 2429-2436. http://dx.doi.org/10.1098/rspb.2007.0693
[88] L. Barrett and P. Henzi, “The Social Nature of Primate Cognition,” Proceedings of the Royal Society B: Biological Sciences, Vol. 272, No. 1575, 2005, pp. 1865-1875. http://dx.doi.org/10.1098/rspb.2005.3200
[89] R. I. M. Dunbar, “The Social Brain Hypothesis,” Evolutionary Anthropology: Issues, News, and Reviews, Vol. 6, No. 5, 1998, pp 178-190.
[90] L. Brothers, “The Social Brain: A Project for Integrating Primate Behaviour and Neurophysiology in a New Domain,” In: Foundations in Social Neuroscience, MIT Press, Cambridge, 2002, pp. 367-389.
[91] R. W. Byrne and N. Corp, “Neocortex Size Predicts Deception Rate in Primates,” Proceedings of the Royal Society B: Biological Sciences, Vol. 271, No. 1549, 2004, pp. 1693-1699. http://dx.doi.org/10.1098/rspb.2004.2780
[92] A. Whiten and R. W. Byrne, “Machiavellian Intelligence II: Extensions and Evaluations,” Cambridge University Press, Cambridge, 1997.
[93] E. Fehr and U. Fischbacher, “The Nature of Human Altruism,” Nature, Vol. 425, 2003, pp. 785-791.
[94] E. Fehr and S. Gachter, “Altruistic Punishment in Humans,” Nature, Vol. 415, No. 6868, 2002, pp. 137-140. http://dx.doi.org/10.1038/415137a
[95] C. T. Gualtieri, “Brain Injury and Mental Retardation: Neuropsychiatry and Psychopharmacology,” Lippincott Williams and Wilkins, Philadelphia, 2002.
[96] K. Rosenberg and W. Trevathan, “Bipedalism and Human Birth: The Obstetrical Dilemma Revisited,” Evolutionary Anthropology: Issues, News, and Reviews, Vol. 4, No. 5, 1995, pp. 161-168. http://dx.doi.org/10.1002/evan.1360040506
[97] S. L. Washburn, “Tools and Human Evolution,” Scientific American, Vol. 203, No., 1960, pp. 63-75.
[98] H. M. Dunsworth, et al., “Metabolic Hypothesis for Human Altriciality,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 109, No. 38, 2012, pp. 15212-15216. http://dx.doi.org/10.1073/pnas.1205282109
[99] P. Lindenfors, C. L. Nunn and R. A. Barton, “Primate Brain Architecture and Selection in Relation to Sex,” BMC Biology, Vol. 5, 2007, p. 20.
[100] E. B. Keverne, F. L. Martel and C. M. Nevison, “Primate Brain Evolution: Genetic and Functional Considerations,” Proceedings of the Royal Society B: Biological Sciences, Vol. 263, No. 1371, 1996, pp. 689-696. http://dx.doi.org/10.1098/rspb.1996.0103
[101] S. Stanley, “Children of the Ice Age,” Freeman, New York, 1998.
[102] S. Pinker, “The Cognitive Niche: Coevolution of Intelligence, Sociality, and Language,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 107, No. 2, 2010, pp. 8993-8999.
[103] R. A. Fisher, “The Genetical Theory of Natural Selection,” Clarendon Press, Oxford, 1930.
[104] R. Lande, “Models of Speciation by Sexual Selection on Polygenic Traits,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 78, No. 6, 1981, pp. 3721-3725. http://dx.doi.org/10.1073/pnas.78.6.3721
[105] C. Wills, “The Runaway Brain: The Evolution of Human Uniqueness,” Basic Books, New York, 1993.
[106] G. Miller, “The Mating Mind: How Sexual Choice Shaped the Evolution of Human Nature,” Anchor, New York, 2001.
[107] J. H. Kaas, “The Evolution of Brains from Early Mammals to Humans,” Wiley Interdisciplinary Reviews: Cognitive Science, Vol. 4, No. 1, 2013, pp. 33-45. http://dx.doi.org/10.1002/wcs.1206
[108] E. L. Thorndike, “Intelligence and Its Uses,” Harper’s Magazine, Vol. 140, 1920, pp. 227-235.
[109] A. Smith, “Thoey of Moral Sentiments,” A Miller, London, 1759.
[110] M. F. Green, et al., “Social Cognition in Schizophrenia: Recommendations from the Measurement and Treatment Research to Improve Cognition in Schizophrenia New Approaches Conference,” Schizophrenia Bulletin, Vol. 31, No. 4, 2005, pp. 882-887. http://dx.doi.org/10.1093/schbul/sbi049
[111] J. Decety and C. Lamm, “Human Empathy through the Lens of Social Neuroscience,” The Scientific World Journal, Vol. 6, 2006, pp. 1146-1163. http://dx.doi.org/10.1100/tsw.2006.221
[112] D. A. Gusnard, E. Akbudak, G. L. Shulman and M. E. Raichle, “Medial Prefrontal Cortex and Self-Referential Mental Activity: Relation to a Default Mode of Brain Function,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 98, No. 7, 2001, pp. 4259-4264. http://dx.doi.org/10.1073/pnas.071043098
[113] D. M. Amodio and C. D. Frith, “Meeting of Minds: The Medial Frontal Cortex and Social Cognition,” Nature Reviews Neuroscience, Vol. 7, No. 4, 2006, pp. 268-277. http://dx.doi.org/10.1038/nrn1884
[114] W. M. Kelley, C. N. Macrae, C. L. Wyland, S. Caglar, S. Inati and T. F. Heatherton, “Finding the Self? An Event-Related fMRI Study,” Journal of Cognitive Neuroscience, Vol. 14, No. 5, 2002, pp. 785-794. http://dx.doi.org/10.1162/08989290260138672
[115] C. N. Macrae, J. M. Moran, T. F. Heatherton, J. F. Banfield and W. M. Kelley, “Medial Prefrontal Activity Predicts Memory for Self,” Cerebral Cortex, Vol. 14, No. 6, 2004, pp. 647-654. http://dx.doi.org/10.1093/cercor/bhh025
[116] K. N. Ochsner, et al., “The Neural Correlates of Direct and Reflected Self-Knowledge,” NeuroImage, Vol. 28, No. 4, 2005, pp. 797-814. http://dx.doi.org/10.1016/j.neuroimage.2005.06.069
[117] R. Saxe, J. M. Moran, J. Scholz and J. Gabrieli, “Overlapping and Non-Overlapping Brain Regions for Theory of Mind and Self Reflection in Individual Subjects,” Social Cognitive and Affective Neuroscience, Vol. 1, No. 3, 2006, pp. 229-234. http://dx.doi.org/10.1093/scan/nsl034
[118] S. J. Gilbert, et al., “Functional Specialization within Rostral Prefrontal Cortex (Area 10): A Meta-Analysis,” Journal of Cognitive Neuroscience, Vol. 18, No. 6, 2006, pp. 932-948. http://dx.doi.org/10.1162/jocn.2006.18.6.932
[119] D. A. Gusnard, et al., “Medial Prefrontal Cortex and Self-Referential Mental Activity: Relation to a Default Mode of Brain Function,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 98, No. 7, 2001, pp. 4259-4264.
[120] P. Ruby and J. Decety, “Effect of Subjective Perspective Taking during Simulation of Action: A PET Investigation of Agency,” Nature Neuroscience, Vol. 4, No. 5, 2001, pp. 546-550.
[121] A. E. Cavanna and M. R. Trimble, “The Precuneus: A Review of Its Functional Anatomy and Behavioural Correlates,” Brain, Vol. 129, No. 3, 2006, pp. 564-583. http://dx.doi.org/10.1093/brain/awl004
[122] K. Semendeferi, E. Armstrong, A. Schleicher, K. Zilles and G. W. Van Hoesen, “Prefrontal Cortex in Humans and Apes: A Comparative Study of Area 10,” American Journal of Physical Anthropology, Vol. 114, No. 3, 2001, pp. 224-241. http://dx.doi.org/10.1002/1096-8644(200103)114:3<224::AID-AJPA1022>3.0.CO;2-I
[123] F. de Vignemont and T. Singer, “The Empathic Brain: How, When and Why?” Trends in Cognitive Sciences, Vol. 10, No. 10, 2006, pp. 435-441. http://dx.doi.org/10.1016/j.tics.2006.08.008
[124] R. L. Moseley, F. Pulvermüller and Y. Shtyrov, “Sensorimotor Semantics on the Spot: Brain Activity Dissociates between Conceptual Categories within 150 Ms,” Scientific Reports, Vol. 3, 2013. http://dx.doi.org/10.1038/srep01928
[125] R. Adolphs, “The Neurobiology of Social Cognition,” Current Opinion in Neurobiology, Vol. 11, No. 2, 2001, pp. 231-239. http://dx.doi.org/10.1016/S0959-4388(00)00202-6
[126] T. Allison, A. Puce and G. McCarthy, “Social Perception from Visual Cues: Role of the STS Region,” Trends in Cognitive Sciences, Vol. 4, No. 7, 2000, pp. 267-278. http://dx.doi.org/10.1016/S1364-6613(00)01501-1
[127] J. V. Haxby, E. A. Hoffman and M. Gobbini, “The Distributed Human Neural System for Face Perception,” Trends in Cognitive Sciences, Vol. 4, No. 6, 2000, pp. 223-233. http://dx.doi.org/10.1016/S1364-6613(00)01482-0
[128] R. Adolphs, “Cognitive Neuroscience of Human Social Behaviour,” Nature Reviews. Neuroscience, Vol. 4, No. 3, 2003, pp. 165-178. http://dx.doi.org/10.1038/nrn1056
[129] R. Adolphs, “The Neurobiology of Social Cognition,” Current Opinion in Neurobiology, Vol. 11, 2001, PP. 231-239.
[130] R. L. Moseley, F. Pulvermüller and Y. Shtyrov, “Sensorimotor Semantics on the Spot,” Scientific Reports, Vol. 3, 2013.
[131] L. Cattaneo and G. Rizzolatti, “The Mirror Neuron System,” JAMA Neurology, Vol. 66, No. 5, 2009, pp. 557-560.
[132] B. Wicker, et al., “Both of Us Disgusted in My Insula: The Common Neural Basis of Seeing and Feeling Disgust,” Neuron, Vol. 40, No. 3, 2003, pp. 655-664. http://dx.doi.org/10.1016/S0896-6273(03)00679-2
[133] L. Carr, M. Iacoboni, M. C. Dubeau, J. C. Mazziotta and G. L. Lenzi, “Neural Mechanisms of Empathy in Humans: A Relay from Neural Systems for Imitation to Limbic Areas,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 100, No. 9, 2003, pp. 5497-5502. http://dx.doi.org/10.1073/pnas.0935845100
[134] M. H. Grosbras and T. Paus, “Brain Networks Involved in Viewing Angry Hands or Faces,” Cerebral Cortex, Vol. 16, No. 8, 2006, pp. 1087-1096. http://dx.doi.org/10.1093/cercor/bhj050
[135] J. Decety and C. Lamm, “Human Empathy through the Lens of Social Neuroscience,” The Scientific World Journal, Vol. 6, 2006, pp. 1146-1163
[136] M. Dapretto, et al., “Understanding Emotions in Others: Mirror Neuron Dysfunction in Children with Autism Spectrum Disorders,” Nature Neuroscience, Vol. 9, No. 1, 2006, pp. 28-30. http://dx.doi.org/10.1038/nn1611.
[137] T. Perkins, M. Stokes, J. McGillivraya and R. Bittar, “Mirror Neuron Dysfunction in Autism Spectrum Disorders,” Journal of Clinical Neuroscience: Official Journal of the Neurosurgical Society of Australasia, Vol. 17, No. 10, 2010, pp. 1239-1243. http://dx.doi.org/10.1016/j.jocn.2010.01.026
[138] L. Cattaneo and G. Rizzolatti, “The Mirror Neuron System,” JAMA Neurology, Vol. 66, No. 5, 2009, pp. 557-560.
[139] B. A. Vollm, et al., “Neuronal Correlates of Theory of Mind and Empathy: A Functional Magnetic Resonance Imaging Study in a Nonverbal Task,” NeuroImage, Vol. 29, No. 1, 2006, pp. 90-98. http://dx.doi.org/10.1016/j.neuroimage.2005.07.022
[140] R. Adolphs, “The Neurobiology of Social Cognition,” Current Opinion in Neurobiology, Vol. 11, 2001, pp. 231-239.
[141] F. B. M. de Waal, “Putting the Altruism Back into Altruism: The Evolution of Empathy,” Annual Review of Psychology, Vol. 59, 2008, pp. 279-300. http://dx.doi.org/10.1146/annurev.psych.59.103006.093625
[142] C. Darwin, “The Descent of Man,” John Murray, London, 1871.
[143] G. P. Wagner and L. Altenberg, “Complex Adaptations and the Evolution of Evolvability,” Evolution, Vol. 50, No. 3, 1996, pp. 967-976. http://dx.doi.org/10.2307/2410639
[144] M. Kirschner and J. Gerhart, “Evolvability,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 95, No. 15, 1998, pp. 8420-8427.
[145] M. E. Feder, “Evolvability of Physiological and Biochemical Traits,” The Journal of Experimental Biology, Vol. 210, 2007 pp. 1653-1660.
[146] C. Wills, “The Runaway Brain: The Evolution of Human Uniqueness,” Publisher, place of publication, Year of publication.
[147] M. Pigliucci, “Is Evolvability Evolvable?” Nature Reviews Genetics, Vol. 9, No. 1, 2008, pp. 75-82. http://dx.doi.org/10.1038/nrg2278
[148] W. M. Gommans, S. P. Mullen and S. Maas, “RNA Editing: A Driving Force for Adaptive Evolution?” BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology, Vol. 31, No. 10, 2009, pp. 1137-1145. http://dx.doi.org/10.1002/bies.200900045
[149] M. E. Feder, “Evolvability of Physiological and Biochemical Traits,” The Journal of Experimental Biology, Vol. 210, 2007 pp. 1653-1660.
[150] C. Canestro, H. Yokoi and J. H. Postlethwait, “Evolutionary Developmental Biology and Genomics,” Nature Reviews Genetics, Vol. 8, No. 12, 2007, pp. 932-942. http://dx.doi.org/10.1038/nrg2226
[151] G. B. Muller, “Evo-Devo: Extending the Evolutionary Synthesis,” Nature Reviews Genetics, Vol. 8, No. 12, 2007, pp. 943-949. http://dx.doi.org/10.1038/nrg2219
[152] N. Burnashev and A. Rozov, “Genomic Control of Receptor Function,” Cellular and Molecular Life Sciences, Vol. 57, No. 11, 2000, pp. 1499-1507.
[153] W. Enard, et al., “Intra-and Interspecific Variation in Primate Gene Expression Patterns,” Science, Vol. 296, No. 5566, 2002, pp. 340-343. http://dx.doi.org/10.1126/science.1068996
[154] Chimpanzee Sequencing and Analysis Consortium, “Initial Sequence of the Chimpanzee Genome and Comparison with the Human Genome,” Nature, Vol. 437, No. 7055, 2005, pp. 69-87. http://dx.doi.org/10.1038/nature04072
[155] S. Dorus, et al., “Accelerated Evolution of Nervous System Genes in the Origin of Homo Sapiens,” Cell, Vol. 119, No. 7, 2004, pp. 1027-1040. http://dx.doi.org/10.1016/j.cell.2004.11.040
[156] W. M. Gommans, S. P. Mullen and S. Maas, “RNA Editing: A Driving Force for Adaptive Evolution?” BioEssays, Vol. 31, No. 10, 2009, pp. 1137-1145.
[157] K. Garber, K. T. Smith, D. Reines and S. T. Warren, “Transcription, Translation and Fragile X Syndrome,” Current Opinion in Genetics & Development, Vol. 16, No. 3, 2006, pp. 270-275. http://dx.doi.org/10.1016/j.gde.2006.04.010
[158] A. J. Verkerk, et al., “Identification of a Gene (FMR-1) Containing a CGG Repeat Coincident with a Breakpoint Cluster Region Exhibiting Length Variation in Fragile X Syndrome,” Cell, Vol. 65, No. 5, 1991, pp. 905-914. http://dx.doi.org/10.1016/0092-8674(91)90397-H
[159] T. A. Comery, et al., “Abnormal Dendritic Spines in Fragile X Knockout Mice: Maturation and Pruning Deficits,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 94, No. 10, 1997, pp. 5401-5404. http://dx.doi.org/10.1073/pnas.94.10.5401
[160] M. B. Ramocki and H. Y. Zoghbi, “Failure of Neuronal Homeostasis Results in Common Neuropsychiatric Phenotypes,” Nature, Vol. 455, No. 7215, 2008, pp. 912-918. http://dx.doi.org/10.1038/nature07457
[161] N. Burnashev and A. Rozov, “Genomic Control of Receptor Function,” Cellular and Molecular Life Sciences, Vol. 57, No. 11, 2000, pp. 1499-1507.
[162] W. M. Gommans, S. P. Mullen and S. Maas, “RNA Editing: A Driving Force for Adaptive Evolution?” BioEssays, Vol. 31, No. 10, 2009, pp. 1137-1145.
[163] J. S. Mattick, R. J. Taft and G. J. Faulkner, “A Global View of Genomic Information—Moving beyond the Gene and the Master Regulator,” Trends in Genetics: TIG, Vol. 26, No. 1, 2009, pp. 21-28. http://dx.doi.org/10.1016/j.tig.2009.11.002
[164] G. Barry, et al., “The Long Non-Coding RNA Gomafu Is Acutely Regulated in Response to Neuronal Activation and Involved in Schizophrenia-Associated Alternative Splicing,” Molecular Psychiatry, 2013. http://dx.doi.org/10.1038/mp.2013.45
[165] W. M. Gommans, S. P. Mullen and S. Maas, “RNA Editing: A Driving Force for Adaptive Evolution?” BioEssays, Vol. 31, No. 10, 2009, pp. 1137-1145.
[166] S. Y. Ng, R. Johnson and L. W. Stanton, “Human Long Non-Coding RNAs Promote Pluripotency and Neuronal Differentiation by Association with Chromatin Modifiers and Transcription Factors,” The EMBO Journal, Vol. 31, No. 3, 2012, pp. 515-579. http://dx.doi.org/10.1038/emboj.2011.459
[167] G. Barry, et al., “The Long Non-Coding RNA Gomafu Is Acutely Regulated in Response to Neuronal Activation and Involved in Schizophrenia-Associated Alternative Splicing,” Molecular Psychiatry, 2013.
[168] C. Ernst and C. C. Morton, “Identification and Function of Long Non-Coding RNA,” Frontiers in Cellular Neuro-science, Vol. 7, 2013, p. 168. http://dx.doi.org/10.3389/fncel.2013.00168
[169] M. F. Pescosolido, et al., “Lighting a Path: Genetic Studies Pinpoint Neurodevelopmental Mechanisms in Autism and Related Disorders,” Dialogues in Clinical Neuroscience, Vol. 14, No. 3, 2012, pp. 239-252.
[170] L. J. Kobrynski and K. E. Sullivan, “Velocardiofacial Syndrome, DiGeorge Syndrome: The Chromosome 22q11.2 Deletion Syndromes,” Lancet, Vol. 370, No. 9596, 2007, pp. 1443-1452. http://dx.doi.org/10.1016/S0140-6736(07)61601-8
[171] D. Gothelf, et al., “Risk Factors for the Emergence of Psychotic Disorders in Adolescents with 22q11.2 Deletion Syndrome,” The American Journal of Psychiatry, Vol. 164, No. 4, 2007, pp. 663-669. http://dx.doi.org/10.1176/appi.ajp.164.4.663
[172] J. A. Lee and J. R. Lupski, “Genomic Rearrangements and Gene Copy-Number Alterations as a Cause of Nervous System Disorders,” Neuron, Vol. 52, No. 1, 2006, pp. 103-121.
[173] D. Gothelf, et al., “Risk Factors for the Emergence of Psychotic Disorders in Adolescents with 22q11.2 Deletion Syndrome,” The American Journal of Psychiatry, Vol. 164, No. 4, 2007, pp. 663-669.
[174] M. B. Ramocki and H. Y. Zoghbi, “Failure of Neuronal Homeostasis Results in Common Neuropsychiatric Phenotypes,” Nature, Vol. 455, 2008, pp. 912-918.
[175] I. Golding, J. Paulsson, S. M. Zawilski and E. C. Cox, “Real-Time Kinetics of Gene Activity in Individual Bacteria,” Cell, Vol. 123, No. 6, 2005, pp. 1025-1036. http://dx.doi.org/10.1016/j.cell.2005.09.031
[176] J. Yu, X. J. Ren, K. Q. Lao and X. S. Xie, “Probing Gene Expression in Live Cells, One Protein Molecule at a Time,” Science, Vol. 311, No. 5767, 2006, pp. 1600-1603. http://dx.doi.org/10.1126/science.1119623
[177] L. López-Maury, S. Marguerat and J. Bahler, “Tuning Gene Expression to Changing Environments: From Rapid Responses to Evolutionary Adaptation,” Nature Reviews. Genetics, Vol. 9, No. 8, 2008, pp. 583-593. http://dx.doi.org/10.1038/nrg2398
[178] M. Goldsmith and D. S. Tawfik, “Potential Role of Phenotypic Mutations in the Evolution of Protein Expression and Stability,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 106, No. 15, 2009, pp. 6197-6202. http://dx.doi.org/10.1073/pnas.0809506106
[179] B. Modrek and C. J. Lee, “Alternative Splicing in the Human, Mouse and Rat Genomes Is Associated with an Increased Frequency of Exon Creation and/or Loss,” Nature Genetics, Vol. 34, No. 2, 2003, pp. 177-180. http://dx.doi.org/10.1038/ng1159
[180] W. M. Gommans, S. P. Mullen and S. Maas, “RNA Editing: A Driving Force for Adaptive Evolution?” BioEssays, Vol. 31, No. 10, 2009, pp. 1137-1145.
[181] V. R. Nelson and J. H. Nadeau, “Transgenerational Genetic Effects,” Epigenomics, Vol. 2, No. 6, 2010, pp. 797-806. http://dx.doi.org/10.2217/epi.10.57
[182] R. M. Alcazar, R. Lin and A. Z. Fire, “Transmission Dynamics of Heritable Silencing Induced by Double-Stranded RNA in Caenorhabditis elegans,” Genetics, Vol. 180, No. 3, 2008, pp. 1275-1288. http://dx.doi.org/10.1534/genetics.108.089433
[183] E. Jablonka and G. Raz, “Transgenerational Epigenetic Inheritance: Prevalence, Mechanisms, and Implications for the Study of Heredity and Evolution,” The Quarterly Review of Biology, Vol. 84, No. 2, 2009, pp. 131-176. http://dx.doi.org/10.1086/598822
[184] P. A. Jones and D. Takai, “The Role of DNA Methylation in Mammalian Epigenetics,” Science, Vol. 293, No. 5532, 2001, pp. 1068-1070. http://dx.doi.org/10.1126/science.1063852
[185] A. P. Feinberg and R. A. Irizarry, “Evolution in Health and Medicine Sackler Colloquium: Stochastic Epigenetic Variation as a Driving Force of Development, Evolutionary Adaptation, and Disease,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 107, Suppl. 1, 2010, pp. 1757-1764. http://dx.doi.org/10.1073/pnas.0906183107
[186] M. E. Feder, “Evolvability of Physiological and Biochemical Traits,” The Journal of Experimental Biology, Vol. 210, No., 2007 pp. 1653-1660.
[187] H. H. Kazazian, “Mobile Elements: Drivers of Genome Evolution,” Science, Vol. 303, No. 5664, 2004, pp. 1626-1632. http://dx.doi.org/10.1126/science.1089670
[188] J. A. Bailey, G. Liu and E. E. Eichler, “An Alu Transposition Model for the Origin and Expansion of Human Segmental Duplications,” American Journal of Human Genetics, Vol. 73, No. 4, 2003, pp. 823-834. http://dx.doi.org/10.1086/378594
[189] G. Liu, et al., “Analysis of Primate Genomic Variation Reveals a Repeat-Driven Expansion of the Human Genome,” Genome Research, Vol. 13, No. 3, 2003, pp. 358-368. http://dx.doi.org/10.1101/gr.923303
[190] M. Brune, “Schizophrenia—An Evolutionary Enigma?” Neuroscience and Biobehavioral Reviews, Vol. 28, No. 1, 2004, pp. 41-53. http://dx.doi.org/10.1016/j.neubiorev.2003.10.002
[191] J. van Dongen and D. I. Boomsma, “The Evolutionary Paradox and the Missing Heritability of Schizophrenia,” American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics: The Official Publication of the International Society of Psychiatric Genetics, Vol. 162, No. 2, 2013, pp. 122-136. http://dx.doi.org/10.1002/ajmg.b.32135
[192] R. M. Nesse, “Cliff-Edged Fitness Functions and the Persistence of Schizophrenia,” Behavioral and Brain Sciences, Vol. 27, No. 6, 2004, pp. 862-863. http://dx.doi.org/10.1017/S0140525X04300191
[193] J. Piven, P. Palmer, D. Jacobi, D. Childress and S. Arndt, “Broader Autism Phenotype: Evidence from a Family History Study of Multiple-Incidence Autism Families,” American Journal of Psychiatry, Vol. 154, No. 2, 1997, pp. 185-190.
[194] J. Piven, et al., “Personality and Language Characteristics in Parents from Multiple-Incidence Autism Families,” American Journal of Medical Genetics, Vol. 74, No. 4, 1997, pp. 398-411. http://dx.doi.org/10.1002/(SICI)1096-8628(19970725)74:4<398::AID-AJMG11>3.0.CO;2-D
[195] P. R. Adriaens, “Debunking Evolutionary Psychiatry’s Schizophrenia Paradox,” Medical Hypotheses, Vol. 70, No. 6, 2008, pp. 1215-1222. http://dx.doi.org/10.1016/j.mehy.2007.10.014
[196] J. Polimeni and J. P. Reiss, “Evolutionary Perspectives on Schizophrenia,” Canadian Journal of Psychiatry. Revue Canadienne de Psychiatrie, Vol. 48, No. 1, 2003, pp. 34-39.
[197] G. Dodgson and S. Gordon, “Avoiding False Negatives: Are Some Auditory Hallucinations an Evolved Design Flaw?” Behavioural and Cognitive Psychotherapy, Vol. 37, No. 3, 2009, pp. 325-334. http://dx.doi.org/10.1017/S1352465809005244
[198] R. A. Power, et al., “Fecundity of Patients with Schizophrenia, Autism, Bipolar Disorder, Depression, Anorexia Nervosa, or Substance Abuse vs Their Unaffected Siblings,” JAMA Psychiatry, Vol. 70, No. 1, 2013, pp. 22-30. http://dx.doi.org/10.1001/jamapsychiatry.2013.268
[199] B. Spyropoulos, “Tay-Sachs Carriers and Tuberculosis Resistance,” Nature, Vol. 331, No. 6158, 1988, p. 666. http://dx.doi.org/10.1038/331666a0
[200] M. Carter and C. A. H. Watts, “Possible Biological Advantages among Schizophrenics’ Relatives,” The British Journal of Psychiatry, Vol. 118, No. 545, 1971, pp. 453-460. http://dx.doi.org/10.1192/bjp.118.545.453
[201] D. Nettle and H. Clegg, “Schizotypy, Creativity and Mating Success in Humans,” Proceedings of the Royal Society B: Biological Sciences, Vol. 273, No. 1586, 2006, pp. 611-615. http://dx.doi.org/10.1098/rspb.2005.3349
[202] T. J. Crow, “Is Schizophrenia the Price That Homo sapiens Pays for Language?” Schizophrenia Research, Vol. 28, No. 2, 1997, pp. 127-141. http://dx.doi.org/10.1016/S0920-9964(97)00110-2
[203] J. H. MacCabe, I. Koupil and D. A. Leon, “Lifetime Re-productive Output over Two Generations in Patients with Psychosis and Their Unaffected Siblings: The Uppsala 1915-1929 Birth Cohort Multigenerational Study,” Psychological Medicine, Vol. 39, No. 10, 2009, pp. 1667-1676. http://dx.doi.org/10.1017/S0033291709005431
[204] M. C. Keller and G. Miller, “Resolving the Paradox of Common, Harmful, Heritable Mental Disorders: Which Evolutionary Genetic Models Work Best?” Behavioral and Brain Sciences, Vol. 29, No. 4, 2006, pp. 385-404. http://dx.doi.org/10.1017/S0140525X06009095
[205] J. van Dongen and D. I. Boomsma, “The Evolutionary Paradox and the Missing Heritability of Schizophrenia,” American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, Vol. 162B, No. 2, 2013, pp. 122-136.
[206] M. Brune, “Schizophrenia-An Evolutionary Enigma?” Neuroscience and Biobehavioral Reviews, Vol. 28, No. 1, 2004, pp. 41-53.
[207] R. E. Hoffman and T. H. McGlashan, “Synaptic Elimination, Neurodevelopment, and the Mechanism of Hallucinated ‘Voices’ in Schizophrenia,” The American Journal of Psychiatry, Vol. 154, No. 12, 1997, pp. 1683-1689.
[208] J. van Dongen and D. I. Boomsma, “The Evolutionary Paradox and the Missing Heritability of Schizophrenia,” American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, Vol. 162B, No. 2, 2013, pp. 122-136.
[209] J. K. Burns, “An Evolutionary Theory of Schizophrenia: Cortical Connectivity, Metarepresentation, and the Social Brain,” The Behavioral and Brain Sciences, Vol. 27, No. 6, 2004, pp. 831-855, discussion 855-885. http://dx.doi.org/10.1017/S0140525X04000196
[210] J. K. Burns, “An Evolutionary Theory of Schizophrenia: Cortical Connectivity, Metarepresentation, and the Social Brain,” The Behavioral and Brain Sciences, Vol. 27, No. 6, 2004, pp. 831-855. http://dx.doi.org/10.1017/S0140525X04000196
[211] E. Rees, V. Moskvina, M. J. Owen, M. C. O’Donovan and G. Kirov, “De Novo Rates and Selection of Schizophrenia-Associated Copy Number Variants,” Biological Psychiatry, Vol. 70, No. 12, 2011, pp. 1109-1114. http://dx.doi.org/10.1016/j.biopsych.2011.07.011
[212] E. Rees, V. Moskvina, M. J. Owen, M. C. O’Donovan and G. Kirov, “De Novo Rates and Selection of Schizophrenia-Associated Copy Number Variants,” Biological Psychiatry, Vol. 70, No. 12, 2011, pp. 1109-1114. http://dx.doi.org/10.1016/j.biopsych.2011.07.011
[213] J. van Dongen and D. I. Boomsma, “The Evolutionary Paradox and the Missing Heritability of Schizophrenia,” American Journal of Medical Genetics. Part B, Neurop-sychiatric Genetics, Vol. 162B, No. 2, 2013, pp. 122-136.
[214] J. K. Pritchard, “Are Rare Variants Responsible for Susceptibility to Complex Diseases?” American Journal of Human Genetics, Vol. 69, No. 1, 2001, pp. 124-137. http://dx.doi.org/10.1086/321272
[215] M. C. Keller and G. Miller, “Resolving the Paradox of Common, Harmful, Heritable Mental Disorders,” The Behavioral and Brain Sciences, Vol. 29, No. 4, 2006, pp. 385-404.
[216] J. M. McClellan, E. Susser and M. C. King, “Schizophrenia: A Common Disease Caused by Multiple Rare Alleles,” The British Journal of Psychiatry: The Journal of Mental Science, Vol. 190, 2007, pp. 194-199. http://dx.doi.org/10.1192/bjp.bp.106.025585
[217] M. Y. M. Ng, et al., “Meta-Analysis of 32 Genome-Wide Linkage Studies of Schizophrenia,” Molecular Psychiatry, Vol. 14, No. 8, 2009, pp. 774-785. http://dx.doi.org/10.1038/mp.2008.135
[218] J. van Dongen and D. I. Boomsma, “The Evolutionary Paradox and the Missing Heritability of Schizophrenia,” American Journal of Medical Genetics. Part B, Neuropsychiatric Genetics, Vol. 162B, No. 2, 2013, pp. 122-136.
[219] M. C. Keller and G. Miller, “Resolving the Paradox of Common, Harmful, Heritable Mental Disorders,” The Behavioral and Brain Sciences, Vol. 29, No. 4, 2006, pp. 385-404.
[220] S. Baron-Cohen, “The Cognitive Neuroscience of Autism,” Journal of Neurology, Neurosurgery, and Psychiatry, Vol. 75, No. 7, 2004, pp. 945-948. http://dx.doi.org/10.1136/jnnp.2003.018713
[221] C. Chevallier, G. Kohls, V. Troiani, E. S. Brodkin and R. T. Schultz, “The Social Motivation Theory of Autism,” Trends in Cognitive Sciences, Vol. 16, No. 4, 2012, pp. 231-239. http://dx.doi.org/10.1016/j.tics.2012.02.007
[222] M. Barbato, et al., “Social Cognition as a Mediator between Neurocognition and Functional Outcome in Individuals at Clinical High Risk for Psychosis,” Schizophrenia Research, Vol. 150, No. 2, 2013, pp. 542-546. http://dx.doi.org/10.1016/j.schres.2013.08.015
[223] A. K. Martin, et al., “Theory of Mind and the Social Brain: Implications for Understanding the Genetic Basis of Schizophrenia,” Genes, Brain, and Behavior, Vol. 13, No. 1, 2014, pp. 104-117. http://dx.doi.org/10.1111/gbb.12066
[224] M. M. Kjelgaard and H. Tager-Flusberg, “An Investigation of Language Impairment in Autism: Implications for Genetic Subgroups,” Language and Cognitive Processes, Vol. 16, No. 2-3, 2001, pp. 287-308. http://dx.doi.org/10.1080/01690960042000058
[225] B. Crespi, P. Stead and M. Elliot, “Comparative Genomics of Autism and Schizophrenia,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 107, Suppl. 1, 2010, pp. 1736-1741. http://dx.doi.org/10.1073/pnas.0906080106
[226] M. Radanovic, et al., “Formal Thought Disorder and Language Impairment in Schizophrenia,” Arquivos de Neuro-Psiquiatria, Vol. 71, No. 1, 2013, pp. 55-60. http://dx.doi.org/10.1590/S0004-282X2012005000015
[227] E. L. Hill and U. Frith, “Understanding Autism: Insights from Mind and Brain,” Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, Vol. 358, No. 1430, 2003, pp. 281-289. http://dx.doi.org/10.1098/rstb.2002.1209
[228] S. Kalkstein, I. Hurford and R. C. Gur, “Neurocognition in Schizophrenia,” Current Topics in Behavioral Neuro-sciences, Vol. 4, 2010, pp. 373-390. http://dx.doi.org/10.1007/7854_2010_42
[229] T. Kato, et al., “Genetic Variation Affects de Novo Translocation Frequency,” Science, Vol. 311, No. 5763, 2006, p. 971. http://dx.doi.org/10.1126/science.1121452
[230] J. R. Lupski, “Genomic Rearrangements and Sporadic Disease,” Nature Genetics, Vol. 39, 2007, pp. S43-S47.
[231] B. Crespi, P. Stead and M. Elliot, “Comparative Genomics of Autism and Schizophrenia,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 107, Suppl. 1, 2010, pp. 1736-1741.
[232] T. Walsh, et al., “Rare Structural Variants Disrupt Multiple Genes in Neurodevelopmental Pathways in Schizophrenia,” Science, Vol. 320, No. 5875, 2008, pp. 539-543.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.