Share This Article:

A Data Mining Analysis of The Parkinson’s Disease

Abstract Full-Text HTML Download Download as PDF (Size:145KB) PP. 71-75
DOI: 10.4236/ib.2011.31012    6,825 Downloads   12,294 Views   Citations

ABSTRACT

Clinical decision- making needs available information to be the guidance for physicians. Nowadays, data mining method is applied in medical research in order to analyze large volume of medical data. This study attempts to use data mining method to analyze the databank of Parkinson’s disease and explore whether the voice measurement variables can be the diagnostic tool for the Parkinson’s disease.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

S. Wu and J. Guo, "A Data Mining Analysis of The Parkinson’s Disease," iBusiness, Vol. 3 No. 1, 2011, pp. 71-75. doi: 10.4236/ib.2011.31012.

References

[1] B. McCourt, R. A. Harrington, K. Fox, C. D. Hamilton, K. Booher, W. E. Hammond, A. Walden and M. Nahm, “Data Standards: At the Intersection of Sites, Clinical Research Networks, and Standards Development Initiatives,” Drug Information Journal, Vol. 41, No. 3, 2007, pp. 393-404.
[2] X. S. Wang, L. Nayda and R. Dettinger, “Infrastructure for a Clinical Decision–Intelligence System,” IBM Systems Journal, Vol. 46, No. 1, 2007, pp. 151-169. HUUUUUUUUUUUUUUUdoi:10.1147/sj.461.0151U
[3] K. Michelsson, J. Raes, C. Thoden and O. Wasz–Hockert, “Sound Spectrographic Cry Analysis in Neonatal Diagonostics: An Evaluative Study,” Journal of Phonet, Vol. 10, 1982, pp. 79-88.
[4] L. Ramig, R. Sherer, I. Titze and S. Ringel, “Acoustic Analysis of Voices of Patients with Neurologic Disease: Rationale and Preliminary Data,” The Annals of Otology, Rhinology, and laryngology, No. 97, 1988, pp. 164-172.
[5] J. Logemann, H. Fisher, B. Boshes and R. E. Blonsky, “Frequency and Concurrence of Vocal Tract Dysfunctions in the Speech of a Large Sample of Parkinson Patients,” Journal of Speech Hear Disord, Vol. 43, 1978, pp. 47-57.
[6] K. M. Rosen, R. D.Kent and J. R. Duffy, “Task–Based Profile of Vocal Intensity Decline in Parkinson’s Disease,” Folia Phoniatrica et Logopaedica, Vol. 57, 2005, pp. 28-37. HUdoi:10.1159/000081959U
[7] J. Spielman, L. O. Ramig, L. Maeler, A. Halpern and J. William, “Effects of an Extended Version of the Lee Silverman Voice Treatment on Voice and Speech in Parkinson’s Disease,” Language Pathology, Vol. 16, No. 2, 2007, pp. 95-107. HUdoi:10.1044/1058–0360(2007/014)U
[8] E. Baudelle, J. Vassiere, J. L. Renard, B. Roubeau and C. Chevrie–Mueller, “Carateristiques Vocaliques Intrinseques et Co–intinseques dans les dysarthries cerebelleuses et parkinsonienne,” Folia Phoniatrica et Logopaedica, No. 55, 2003, pp .137-146. HUdoi:10.1159/000070725U
[9] M. A. Little, P. E. McSharry, E. J. Hunter and L. O. Ramig, “Suitability of Dysphonia Measurements for Telemonitoring of Parkinson’s Disease,” IEEE Transactions on Biomedical Engineering, 2008 (to appear).
[10] S. Sharma, “Applied Multivariate Techniques,” John Wiley & Sons, Inc., New York, 1996.
[11] I. T. Jollife, Principal Component Analysis, 2nd Edition, Springer-Verlag, 2002, pp. 487.
[12] D. W. Hosmer and S. Lemeshow, “Applied Logistic Regression,” 2nd Edition, John Wiley & Sons, Inc., 2000. HUdoi:10.1002/0471722146U
[13] J. Han and M. Kamber, Data Mining Concepts and Techniques, Elsevier, Australia, 2006.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.