Grape Phenolic Extract Potentially Useful in the Control of Antibiotic Resistant Strains of Campylobacter

Abstract

In this work, a grape phenolic extract obtained by methanol extraction has been demonstrated to be effective in inhibiting the growth of different strains and species of Campylobacter, one of the most important bacterial foodborne pathogens causing gastroenteritis worldwide. Noteworthily, it was particularly effective against several strains presenting multiple antibiotic resistances. In all cases, the minimum inhibitory concentration (MIC) was lower than 300 mg GAE/L, being of 60 mg GAE/L for one of the most resistant strains (C. coli LP2), while the others were between 120 mg GAE/L and 180 mg GAE/L. The analytical study of the main phenolic compounds in the grape extract revealed that it was mainly constituted by catechins (85.7%) and phenolic acids (13.7%). However, experiments developed using pure standards demonstrate that phenolic acids (such as gallic, p-hidroxibenzoic, vanillic, and homovanillic acids) were the most active, provoking a Campylobacter growth decrease between 6.7 and 7.6 log, while epicatechin was the only catechin with activity as pure compound (1 log of growth decrease).

Share and Cite:

E. Mingo, A. Carrascosa, S. Pascual-Teresa and A. Martinez-Rodriguez, "Grape Phenolic Extract Potentially Useful in the Control of Antibiotic Resistant Strains of Campylobacter," Advances in Microbiology, Vol. 4 No. 2, 2014, pp. 73-80. doi: 10.4236/aim.2014.42012.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. Ganan, J. M. Silvan, A. V. Carrascosa and A. J. Martinez-Rodriguez, “Alternative Strategies to Use Antibiotics or Chemical Products for Controlling Campylobacter in the Food Chain,” Food Control, Vol. 24, 2012, pp. 6-14.
http://dx.doi.org/10.1016/j.foodcont.2011.09.027
[2] C. Fitzgerald, J. Whichard and I. Nachamkin, “Diagnosis and Antimicrobial Susceptibility of Campylobacter Species,” In: I. Nachamkin, C. M. Szymanski and M. J. Blaser, Eds., Campylobacter, 3rd Edition, American Society for Microbiology, Washington DC, 2008, pp. 227-243.
[3] T. Humphrey, S. O’Brien and M. Madsen, “Campylobacters as Zoonotic Pathogens: A Food Production Perspective,” International Journal of Food Microbiology, Vol. 117, 2007, pp. 237-257.
http://dx.doi.org/10.1016/j.ijfoodmicro.2007.01.006
[4] C. K. Olson, S. Ethelberg, W. van Pelt and R. V. Tauxe, “Epidemiology of Campylobacter jejuni Infections in Industrialized Nations Campylobacter,” In: I. Nachamkin, C. M. Szymanski and M. J. Blaser, Eds., Campylobacter, 3rd Edition, American Society for Microbiology, Washington DC, 2008, pp. 163-189.
[5] Q. Zhang and P. J. Plummer, “Mechanisms of Antibiotic Resistance in Campylobacter,” In: I. Nachamkin, C. M. Szymanski and M. J. Blaser, Eds., Campylobacter, 3rd Edition, American Society for Microbiology, Washington DC, 2008, pp. 263-266.
[6] EFSA, “The Community Summary Report on Trends and Sources of Zoonoses, Zoonotic Agents and Food-Borne Outbreaks in the European Union in 2008,” EFSA Journal, Vol. 8, 2010, p. 1496.
[7] European Commission, “Regulation (EC) No 1831/2003 on Additives for Use in Animal Nutrition,” Official Journal of the European Union, Vol. L268, 2003, pp. 29-43.
[8] M. Anastasiadi, N. G. Chorianopoulos, G. J. E. Nychas and S. A. Haroutounian, “Antilisterial Activities of Polyphenolic-Rich Extracts of Grapes and Vinification Byproducts,” Journal of Agricultural and Food Chemistry, Vol. 57, 2009, pp. 457-463.
http://dx.doi.org/10.1021/jf8024979
[9] J. D. Adamez, E. G. Samino, E. V. Sanchez and D. Gonzalez-Gomez, “In Vitro Estimation of the Antibacterial Activity and Antioxidant Capacity of Aqueous Extracts from Grape-Seeds (Vitis vinifera L.),” Food Control, Vol. 24, 2012, pp. 136-141.
http://dx.doi.org/10.1016/j.foodcont.2011.09.016
[10] V. Katalinic, S. Mozina, I. Generaliz, D. Skroza, I. Ljubenkov and A. Klancnik, “Phenolic Profile, Antioxidant Capacity, and Antimicrobial Activity of Leaf Extracts from Six Vitis vinifera L. Varieties,” International Journal of Food Properties, Vol. 16, 2013, pp. 45-60.
http://dx.doi.org/10.1080/10942912.2010.526274
[11] M. Kurinci, A. Klancnik and S. Mozina, “Epigallocatechin Gallate as a Modulator of Campylobacter Resistance to Macrolide Antibiotics,” International Journal of Antimicrobial Agents, Vol. 40, 2012, pp. 467-471.
http://dx.doi.org/10.1016/j.ijantimicag.2012.07.015
[12] J. M. Silvan, E. Mingo, M. Hidalgo, S. de Pascual-Teresa, A. V. Carrascosa and A. J. Martinez-Rodriguez, “Antibacterial Activity of a Grape Seed Extract and Its Fractions against Campylobacter spp,” Food Control, Vol. 29, 2013, pp. 25-31.
http://dx.doi.org/10.1016/j.foodcont.2012.05.063
[13] Clinical and Laboratoy Standars Institute (CLSI, formerly NCCLS), “Performance Standards for Antimicrobial Susceptibility Testing,” Seventeenth Informational Supplement, Vol. 27, No. 1, 2007, pp. M100-S17.
[14] T. Luangtongkum, T. Y. Morishita, A. B. El-Tayeb, A. J. Ison and Q. Zhang, “Comparison of Antimicrobial Susceptibility Testing of Campylobacter spp. by the Agar Dilution and the Agar Disk Diffusion Methods,” Journal of Clinical Microbiology, Vol. 45, 2007, pp. 590-594.
http://dx.doi.org/10.1128/JCM.00986-06
[15] J. K. Miflin, J. M. Templeton and P. J. Blackall, “Antibiotic Resistance in Campylobacter Jejuni and Campylobacter coli Isolated from Poultry in the South-East Queensland Region,” Journal of Antimicrobial Chemotherapy, Vol. 59, 2007, pp. 775-778.
http://dx.doi.org/10.1093/jac/dkm024
[16] K. Pallauf, J. C. Rivas-Gonzalo, M. D. del Castillo, M. P. Cano and S. de Pascual-Teresa, “Characterization of the Antioxidant Composition of Strawberry Tree (Arbutus unedo L.) Fruits,” Journal of Food Composition and Analysis, Vol. 21, 2008, pp. 273-281.
http://dx.doi.org/10.1016/j.jfca.2007.11.006
[17] B. M. Schmidt, J. W. Erdman and M. A. Lila, “Effects of Food Processing on Blueberry Antiproliferation and Antioxidant Activity,” Journal of Food Science, Vol. 70, 2005, pp. S389-S394.
http://dx.doi.org/10.1111/j.1365-2621.2005.tb11461.x
[18] M. Avila, M. Hidalgo, C. Sánchez-Moreno, C. Pelaez, T. Requena and S. de Pascual-Teresa, “Bioconversion of Anthocyanin Glycosides by Bifidobacteria and Lactobacillus,” Food Research International, Vol. 42, 2009, pp. 1453-1461.
http://dx.doi.org/10.1016/j.foodres.2009.07.026
[19] E. C. Gaynor, S. Cawthraw, G. Manning, J. K. MacKichan, S. Falkow and D. G. Newell, “The Genome-SeQuenced Variant of Campylobacter jejuni NCTC 11168 and the Original Clonal Clinical Isolate Differ Markedly in Colonization, Gene Expression, and Virulence-Associated Phenotypes,” Journal of Bacteriology, Vol. 186, 2004, pp. 503-517.
http://dx.doi.org/10.1128/JB.186.2.503-517.2004
[20] S. S. Kim, H. S. Lee, Y. S. Cho, Y. S. Lee, C. S. Bhang, H. S. Chae, S. W. Han, I. S. Chung and D. H. Park, “The Effect of the Repeated Subcultures of Helicobacter pylori on Adhesion, Motility, Cytotoxicity, and Gastric Inflammation,” Journal of Korean Medical Science, Vol. 17, 2002, pp. 302-306.
[21] A. Gibreel and D. E. Taylor, “Macrolide Resistance in Campylobacter jejuni and Campylobacter coli,” Journal of Antimicrobial Chemotherapy, Vol. 58, 2006, pp. 243-255.
http://dx.doi.org/10.1093/jac/dkl210
[22] A. J. Hakanen, M. Lehtopolku, A. Siitonen, P. Huovinen, Kotilainen, “Multidrug Resistance in Campylobacter jejuni Strains Collected from Finnish Patients during 1995-2000,” Journal of Antimicrobial Chemotherapy, Vol. 2, 2003, pp. 1035-1039.
http://dx.doi.org/10.1093/jac/dkg489
[23] M. J. Blaser and J. Engberg, “Clinical Aspects of Campylobacter jejuni and Campylobacter coli Infections,” In: I. Nachamkin, C. M. Szymanski and M. J. Blaser, Eds., Campylobacter, 3rd Edition, American Society for Microbiology, Washington DC, 2008, pp. 99-121.
[24] M. Friedman, P. R. Henika, C. E. Levin, R. E. Mandrell and N. Kozukue, “Antimicrobial Activities of Tea Catechins and Theaflavins and Tea Extracts against Bacillus cereus,” Journal of Food Protection, Vol. 69, 2006, pp. 365-361.
[25] H. Nawaz, J. Shi, G. Mittal and Y. Kakuda, “Extraction of Polyphenols from Grape Seeds and Concentration by Ultrafiltration,” Separation and Purification Technology, Vol. 48, 2006, pp. 176-181.
http://dx.doi.org/10.1016/j.seppur.2005.07.006
[26] J. L. Ríos and M. C. Recio, “Medicinal Plants and Antimicrobial Activity,” Journal of Ethnopharmacology, Vol. 100, 2005, pp. 80-84.
http://dx.doi.org/10.1016/j.jep.2005.04.025
[27] M. Ravichandran, N. S. Hettiarachchy, V. Ganesh, S. C. Ricke and S. Singh, “Enhancement of Antimicrobial Activities of Naturally Occurring Phenolic Compounds by Nanoscale Delivery against Listeria monocytogenes, Escherichia coli O157:H7 and Salmonella typhimurium in Broth and Chicken Meat System,” Journal of Food Safety, Vol. 31, 2011, pp. 462-471.
http://dx.doi.org/10.1111/j.1745-4565.2011.00322.x
[28] T. P. T. Cushnie and A. J. Lamb, “Recent Advances in Understanding the Antibacterial Properties of Flavonoids,” International Journal of Antimicrobial Agents, Vol. 38, 2011, pp. 99-107.
http://dx.doi.org/10.1016/j.ijantimicag.2011.02.014
[29] M. J. R. Vaquero, P. A. A. Fernandez, M. C. M. de Nadra and A. M. S. de Saad, “Phenolic Compound Combinations on Escherichia coli Viability in a Meat System,” Journal of Agricultural and Food Chemistry, Vol. 58, 2010, pp. 60486052. http://dx.doi.org/10.1021/jf903966p
[30] M. Monagas, B. Bartolome and C. Gomez-Cordoves, “Updated Knowledge about the Presence of Phenolic Compounds in Wine,” Critical Reviews in Food Science and Nutrition, Vol. 45, 2005, pp. 85-118.
http://dx.doi.org/10.1080/10408690490911710
[31] T. Nurmi, J. Mursu, M. Heinonen, A. Nurmi, R. Hiltunen and S. Voutilainen, “Metabolism of Berry Anthocyanins to Phenolic Acids in Humans,” Journal of Agricultural and Food Chemistry, Vol. 57, 2009, pp. 2274-2281.
http://dx.doi.org/10.1021/jf8035116

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.