Share This Article:

Structural Studies on ι-Carrageenan Derived Oligosaccharides and Its Application

Abstract Full-Text HTML Download Download as PDF (Size:938KB) PP. 17-22
DOI: 10.4236/aces.2014.41003    4,394 Downloads   6,335 Views   Citations


Mild hydrochloric acid hydrolysis of i-carrageenan from Eucheuma spinosum yielded two oligosaccharides of sulfated tetrasaccharide structure. These were characterized by Fourier Transform Infrared Spectroscopy (FT-IR), Nuclear Magnetic Resonance (NMR) and Electrospray Ionization Mass Spectrometry (ESIMS). Both oligosaccharides have structure of b-D-galactopyranose(Galp)4S-(14)-α-D-AnGalp2S-(13)-b-D-galactopyranose Galp)4S-(14)-α-D-AnGalp2S-(13). Application of the resulting oligosaccharides on protein delivery system in terms of encapsulation efficiency was performed.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Briones, A. and Sato, T. (2014) Structural Studies on ι-Carrageenan Derived Oligosaccharides and Its Application. Advances in Chemical Engineering and Science, 4, 17-22. doi: 10.4236/aces.2014.41003.


[1] H. Yuan, J. Song, X. Li, N. Li and J. Dai, “Immunomodulation and Antitumor Activity of [κappa]-Carrageenan Oligosaccharides,” Cancer Letters, Vol. 243, No. 2, 2006, pp. 228-234.
[2] N. Volpi and F. Maccari, “Structural Characterization and Antithrombin Activity of Dermatan Sulfate Purified from Marine Clam Scapharca inaequivalvis,” Glycobiology, Vol. 19, No. 4, 2009, pp. 356-367.
[3] H. Zhao, H. Liu, Y. Chen, X. Xin, J. Li, Y. Hou, Z. Zhang, X. Zhang, C. Xie and M. Geng, “Oligomannurarate Sulfate, A Novel Heparanase Inhibitor Simultaneously Targeting Basic Fibroblast Growth Factor, Combats Tumor Angiogenesis and Metastasis,” Cancer Research, Vol. 66, No. 17, 2006, pp. 8779-8787.
[4] J. H. Fitton, M. R. Irhimeh and J. Teas, “14 Marine Algae and Polysaccharides with Therapeutic Applications,” In: C. J. Barrow and F. Shahidi, Eds., Marine Nutraceuticals and Functional Foods, CRC Press, 2008, p. 345.
[5] Q. H. Hou, W. D. Song, H. Wang and L. L. Ji, “Antidiabetic Effect of Thallus laminariae Oligosaccharide on Type 2 Diabetic Rats,” Journal of Zhanjiang Ocean University, Vol. 29, No. 4, 2009, pp. 46-50.
[6] N. R. Sudarshan, D. G. Hoover and D. Knorr, “Antibacterial Action of Chitosan,” Food Biotechnology, Vol. 6, No. 3, 1992, pp. 257-272.
[7] M. N. Alekshun and S. B. Levy, “Targeting Virulence to Prevent Infection: To Kill or Not to Kill?” Drug Discovery Today: Therapeutic Strategies, Vol. 1, No. 4, 2004, pp. 483-489.
[8] W. Xie, P. Xu and Q. Liu, “Antioxidant Activity of Water-Soluble Chitosan Derivatives,” Bioorganic & Medicinal Chemistry Letters, Vol. 11, No. 13, 2001, pp. 1699-1701.
[9] J. Ji, L. C. Wang, H. Wu and H. M. Luan, “Bio-Function Summary of Marine Oligosaccharides,” International Journal of Biology, Vol. 3, No. 1, 2011, pp. 75-86.
[10] H. Yuan and J. Song, “Preparation, Structural Characterization and in Vitro Antitumor Activity of Kappa-Carrageenan Oligosaccharide Fraction from Kappaphycus striatum,” Journal of Applied Phycology, Vol. 17, No. 1, 2005, pp. 7-13.
[11] G. Yu, H. Guan, A. S. Ioanoviciu, S. A. Sikkander, C. Thanawiroon, J. K. Tobacman, T. Toida and R. J. Linhardt, “Structural Studies on κ-Carrageenan Derived Oligosaccharides,” Carbohydrate Research, Vol. 337, 2002, pp. 433-440.
[12] B. M. Henares, E. P. Enriquez, F. M. Dayrit and N. R. L. Rojas, “Iota-Carrageenan Hydrolysis by Pseudoalteromonas carrageenovora IFO12985,” Philippine Journal of Science, Vol. 139, No. 2, 2010, pp. 131-138.
[13] X. Hu, X. Jiang, E. Aubree, P. Boulenguer and A. T. Critchley, “Preparation and in Vivo. Antitumor Activity of κ-Carrageenan Oligosaccharides,” Pharmaceutical Biology, Vol. 44, No. 9, 2006, pp. 646-650.
[14] M. Guibet, S. Colin, T. Barbeyron, S. Genicot, B. Kloareg, G. Michel and W. Helbert, “Degradation of λ-carrageenan by Pseudoalteromonas carrageevora λ-carrageenase: A New Family of Glycoside Hydrolases Unrelated to κand ι-Carrageenases,” Biochemical Journal, Vol. 404, 2007, pp. 105-114.
[15] C. Aguzzi, M. C. Bonferoni, M. R. O. Fortich, S. Rossi, F. Ferrari and C. Caramella, “Influence of Complex Solubility on Formulations Based on Lambda Carrageenan and Basic Drugs,” AAPS PharmSciTech, Vol. 3, No. 3, 2003, pp. 83-89.
[16] A. M. Garcia and E. S. Ghaly, “Preliminary Spherical Agglomerates of Water Soluble Drug Using Natural Polymer and Cross-Linking Technique,” Journal of Controlled Release, Vol. 4, No. 30, 1996, pp. 179-186.
[17] O. Sipahigil and B. Dortunc, “Preparation and in Vitro Evaluation of Verapamil HCl and Ibuprofen Containing Carrageenan Beads,” International Journal of Pharmaceutics, Vol. 228, No. 1, 2001, pp. 119-128.
[18] Y. Ozsoy and N. Bergisadi, “Preparation of Mefenamic Acid Sustained Release Beads Based on Kappa-Carrageenan,” Bollettino Chimico Farmaceutico, Vol. 139, No. 3, 2000, pp. 120-123.
[19] M. R. Mangione, D. Giacomazza, G. Cavallaro, D. Bulone, V. Martorana and P. L. San Biagio, “Relation between Structural and Release Properties in a Polysaccharide Gel System,” Biophysical Chemistry, Vol. 129, No. 1, 2007, pp. 18-22.
[20] G. Ruiz and E. S. Ghaly, “Mucoadhesive Delivery Systems Using Carrageenan and Eudragit RLPO,” VitaeColumbia, Vol. 13, No. 1, 2006, pp. 31-39.
[21] V. K. Gupta, M. Hariharan, T. A. Wheatley and J. C. Price, “Controlled-Release Tablets from Carrageenans: Effect of Formulation, Storage and Dissolution Factors,” European Journal of Pharmaceutics and Biopharmaceutics, Vol. 51, No. 3, 2001, pp. 241-248.
[22] A. Pourjavadi, Sh. Barzegar and F. Zeidabadi, “Synthesis and Properties of Biodegradable Hydrogels of κ-Carrageenan Grafted Acrylic Acid-co-2-acrylamido-2-methylpropanesulfonic Acid as Candidates for Drug Delivery Systems,” Reactive and Functional Polymers, Vol. 67, No. 7, 2007, pp. 644-654.
[23] WHO, “Evaluation of Certain Food Additives and Contaminants,” Sixty-Eighth Report of the Joint FAO/WHO Expert Committee on Food Additives, WHO Technical Report Series 947, 2007, pp. 32-33.
[24] W. M. Heller, “The United States Pharmacopeia,” 22nd Edition, 12601Twinbrook Parkway, Rockville, 1990.
[25] A. V. Briones and T. Sato, “Ability of Chitosan/Carrageenan Complex to Encapsulate Bovine Serum Albumin (BSA) for Potential Use in Protein Delivery,” Asian Journal of Biological and Life Sciences, Vol. 2, No. 2, 2013, pp. 163-169.
[26] S. H. Knutsen, D. E. Myslabodski, B. Larsen and A. I. Usov, “A Modified System of Nomenclature for Red Algal Galactans,” Botanica Marina, Vol. 37, No. 2, 1994, pp. 163-169.
[27] C. W. Greer, C. Rochas and W. Yaphe, “Iota-Carrageenan Oligosaccharides as Model Compounds for Structural Analysis of Iota-Carrageenan by 13C-NMR Spectroscopy,” Botanica Marina, Vol. 28, 1985, pp. 9-14.
[28] C. Mireles, M. Martino, J. Bouzas and J. A. Torres, “Complex Formation of Chitosan and Naturally Occurring Polyanions,” In: C. J. Brine, P. A. Sandford and J. P. Zikakis Eds., Advances in Chitin and Chitosan, Elsevier Applied Science, London, 1991, pp. 506-515.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.