[1]
|
I. Villemure and I. A. F. Stokes, “Growth Plate Mechanics and Mechanobiology. A Survey of Present Understanding,” Journal of Biomechanics, Vol. 42, No. 12, 2009, pp. 1793-1803.
http://dx.doi.org/10.1016/j.jbiomech.2009.05.021
|
[2]
|
J. P. Iannotti, S. Goldstein, J. Kuhn, L. Lipiello, F. S. Kaplan and D. J. Zaleske, “The Formation and Growth of Skeletal Tissue,” In: J. A. Buckwalter, T. A. Einhorn, S. R. Simon, et al., Eds., Orthopaedic Basic Science. Biology and Biomechanics of the Musculoskeletal System Basic Science. Biology and Biomechanics of the Musculoskeletal System, American Academy of Orthopaedic Surgeons, 2000, pp. 77-109.
|
[3]
|
I. A. F. Stokes, “Mechanical Effects on Skeletal Growth,” Journal of Musculoskeletal and Neuronal Interactions, Vol. 2, No. 3, 2002, pp. 277-280.
|
[4]
|
R. Hall, “A Mathematical Model for Longitudinal Bone Growth,” Master Thesis, Oxford University, Oxford, 2000.
|
[5]
|
C. Hueter, “Anatomische Studien an den Extremitaeten-gelenken Neugeborener und Erwachsener,” Archiv für Pathologische Anatomie und Physiologie und für Klinische Medicin, Vol. 25, No. 5-6, 1862, pp. 572-599.
|
[6]
|
R. Volkmann, “Verletzungen und Kankenheiten der Bewegungsorgane,” In: F. R. von Pitha and T. Billroth, Eds., Handbuch der Allgemeinen und Speciellen Chirurgie Bd II Teil II, Ferdinand Enke, Stuttgart, 1882.
|
[7]
|
H. M. Frost, “Defining Osteopenias and Osteoporoses: Another View (with Insights from a New Paradigm),” Bone, Vol. 20, No. 5, 1997, pp. 385-391.
http://dx.doi.org/10.1016/S8756-3282(97)00019-7
|
[8]
|
D. R. Carter and M. Wong, “Modelling Cartilage Mechanobiology,” Philosophical Transactions of the Royal Society of London Series B—Biological Sciences, Vol. 358, No. 1437, 2003, pp. 1461-1471.
http://dx.doi.org/10.1098/rstb.2003.1346
|
[9]
|
D. R. Carter and M. Wong, “The Role of Mechanical Loading Histories in the Development of Diarthrodial Joints,” Journal of Orthopaedic Research, Vol. 6, No. 6, 1988, pp. 804-816.
http://dx.doi.org/10.1002/jor.1100060604
|
[10]
|
H. M. Frost, “Skeletal Structural Adaptations to Mechanical Usage (SATMU). 3. The Hyaline Cartilage Modeling Problem. Anatomical Record,” The Anatomical Record, Vol. 226, No. 4, 1990, pp. 423-432.
http://dx.doi.org/10.1002/ar.1092260404
|
[11]
|
J. J. Mao and H. D. Nah, “Growth and Development: Hereditary and Mechanical Modulations,” American Journal of Orthodontics and Dentofacial Orthopedics, Vol. 125, No. 6, 2004, pp. 676-689.
http://dx.doi.org/10.1016/j.ajodo.2003.08.024
|
[12]
|
G. H. Thompson and J. R. Carter, “Late-Onset Tibia Vara (Blount’s Disease)—Current Concepts,” Clinical Orthopaedics and Related Research, Vol. 255, 1990, pp. 24-35.
|
[13]
|
J. C. Tutorino, Z. G. Khubchandani, J. L. Williams, C. M. Cobb and T. L. Schmidt, “Can The Epiphyseal Growth Plate be Injured in Compression?” In: B. S. Trippel, Ed., Transactions of the 47th Annual Meeting of the Orthopaedic Research Society, Vol. 26, Orthopaedic Research Society, Rosemont, IL, 2001, p. 353.
|
[14]
|
S. Piszczatowski, “Material Aspects of Growth Plate Modelling Using Carter’s and Stokes’s Approaches,” Acta of Bioengineering and Biomechanics, Vol. 13, No. 3, 2011, pp. 3-14.
|
[15]
|
S. Piszczatowski, “Geometrical Aspects of Growth Plate Modelling Using Carter’s and Stokes’s Approaches,” Acta of Bioengineering and Biomechanics, Vol. 14, No. 1, 2012, pp. 93-106.
|
[16]
|
K. Sergerie, M. O. Lacoursiere, M. Levesque and I. Villemure, “Mechanical Properties of the Porcine Growth Plate and Its Three Zones from Unconfined Compression Tests,” Journal of Biomechanics, Vol. 42, No. 4, 2009, pp. 510-516. http://dx.doi.org/10.1016/j.jbiomech.2008.11.026
|
[17]
|
B. Cohen, W. M. Lai and V. C. Mow, “A Transversely Isotropic Biphasic Model for Unconfined Compression of Growth Plate and Chondroepiphysis,” Journal of Biomechanical Engineering-Transactions of the ASME, Vol. 120, No. 4, 1998, pp. 491-496.
http://dx.doi.org/10.1115/1.2798019
|
[18]
|
P. Radhakrishnan, N. T. Lewis and J. J. Mao, “Zone-Specific Micromechanical Properties of the Extracellular Matrices of Growth Plate Cartilage,” Annals of Biomedical Engineering, Vol. 32, No. 2, 2004, pp. 284-291.
http://dx.doi.org/10.1023/B:ABME.0000012748.41851.b4
|
[19]
|
G. A. Laughlin, J. L. Williams and J. D. Eick, “The Influence of System Compliance and Sample Geometry on Composite Polymerization Shrinkage Stress,” Journal of Biomedical Materials Research, Vol. 63, No. 5, 2002, pp. 671-678. http://dx.doi.org/10.1002/jbm.10386
|
[20]
|
E. A. Martin, E. L. Ritman and R. T. Turner, “Time Course of Epiphyseal Growth Plate Fusion in Rat Tibiae,” Bone, Vol. 32, No. 3, 2003, pp. 261-267.
http://dx.doi.org/10.1016/S8756-3282(02)00983-3
|
[21]
|
B. Cohen, G. S. Chorney, D. P. Phillips, H. M. Dick and V. C. Mow, “Compressive Stress-Relaxation Behavior of Bovine Growth-Plate May Be Described by the Nonlinear Biphasic Theory,” Journal of Orthopaedic Research, Vol. 12, No. 6, 1994, pp. 804-813.
http://dx.doi.org/10.1002/jor.1100120608
|
[22]
|
V. C. Mow, S. C. Kuei, W. M. Lai and C. G. Armstrong, “Biphasic Creep and Stress-Relaxation of Articular-Cartilage in Compression—Theory and Experiments,” Journal of Biomechanical Engineering, Vol. 102, No. 1, 1980, pp. 73-84. http://dx.doi.org/10.1115/1.3138202
|
[23]
|
M. Wong and D. R. Carter, “A Theoretical-Model of Endochondral Ossification and Bone Architectural Construction in Long-Bone Ontogeny,” Anatomy and Embryology, Vol. 181, No. 6, 1990, pp. 523-532.
http://dx.doi.org/10.1007/BF00174625
|
[24]
|
F. Barthelat, D. Fonck and A. L. Lerner, “Investigation of the Poroelastic Behavior of the Rabbit Growth Plate Cartilage,” In: V. K. Goel, R. L. Spilker, G. A. Athesian, L. J. Soslowsky, Eds., Proceedings of the 1999 Bioengineering Conference, BED-Vol. 42, ASME, New York, NY, 1999, pp. 757-758.
|