Share This Article:

Unusual metallo-β-lactamases may constitute a new subgroup in this family of enzymes

Abstract Full-Text HTML XML Download Download as PDF (Size:380KB) PP. 11-15
DOI: 10.4236/ajmb.2014.41002    3,283 Downloads   6,255 Views   Citations

ABSTRACT

Metallo-β-lactamases (MBLs) are a family of Zn2+-dependent enzymes that have contributed strongly to the emergence and spread of antibiotic resistance. Novel members as well as variants of existing members of this family are discovered continuously, compounding their threat to global health care. MBLs are divided into three subgroups, i.e. B1, B2 and B3. The recent discovery of an unusual MBL from Serratia proteamaculans (SPR-1) suggests the presence of an additional subgroup, i.e. B4. A database search reveals that SPR-1 has only one homologue from Cronobacter sakazakii, CSA-1.These two MBLs have a unique active site and may employ a mechanism distinct from other MBLs, but reminiscent of some organophosphate-degrading hydrolases.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Hou, C. , Phelan, E. , Miraula, M. , Ollis, D. , Schenk, G. and Mitić, N. (2014) Unusual metallo-β-lactamases may constitute a new subgroup in this family of enzymes. American Journal of Molecular Biology, 4, 11-15. doi: 10.4236/ajmb.2014.41002.

References

[1] Fisher, J.F., Meroueh, S.O. and Mobashery, S. (2005) Bacterial resistance to beta-lactam antibiotics: Compelling opportunism, compelling opportunity. Chemical Reviews, 105, 395-424. http://dx.doi.org/10.1021/cr030102i
[2] Walsh, T.R., Toleman, M.A., Poirel, L. and Nordmann, P. (2005) Metallo-beta-lactamases: The quiet before the storm? Clinical Microbiology Reviews, 182, 306-325.
http://dx.doi.org/10.1128/CMR.18.2.306-325.2005
[3] Escobar Perez, J.A., Olarte Escobar, N.M., Castro-Cardozo, B., Valderrama Marquez, I.A., Garzon Aguilar, M.I., Martinez de la Barrera, L., Barrero Barreto, E.R., Marqeuz-Ortiz, R.A., Moncada Guayazan, M.V. and Vanegas Gomez, N. (2013) Outbreak of NDM-1 producing Klebsiella pneumoniae in a neonatal unit in Colombia. Antimicrobial Agents and Chemotherapy, 57, 1957-1960.
[4] Thomas, P.W., Zheng, M., Wu, S.S., Guo, H., Liu, D.L., Xu, D.G. and Fast, W. (2011) Characterization of Purified New Delhi Metallo-beta-lactamase-1. Biochemistry, 5046, 10102-10113. http://dx.doi.org/10.1021/bi201449r
[5] Laraki, N., Franceschini, N., Rossolini, G.M., Santucci, P., Meunier, C., de Pauw, E., Amicosante, G., Frere, J.M. and Galleni, M. (1999) Biochemical characterization of the Pseudomonas aeruginosa 101/1477 metallo-beta-lactamase IMP-1 produced by Escherichia coli. Antimicrobial Agents and Chemotherapy, 434, 902-906.
[6] Carfi, A., Pares, S., Duee, E., Galleni, M., Duez, C., Frere, J. and Dideberg, O. (1995) The 3-D structure of a zinc metallo-beta-lactamase from Bacillus cereus reveals a new-type of protein fold. The EMBO Journal, 1420, 4914-4921.
[7] Crowder, M.W., Wang, Z.G., Franklin, S.L., Zovinka, E. P. and Benkovic, S.J. (1996) Characterization of the metal-binding sites of the beta-lactamase from Bacteroides fragilis. Biochemistry, 3537, 12126-12132.
http://dx.doi.org/10.1021/bi960976h
[8] Murphy, T.A., Catto, L.E., Halford, S.E., Hadfield, A.T., Minor, W., Walsh, T.R. and Specer, J. (2006) Crystal structure of Pseudomonas aeruginosa SPM-1 provides insights into variable zinc affinity of metallo-beta-lactamases. Journal of Molecular Biology, 3573, 890-903.
http://dx.doi.org/10.1016/j.jmb.2006.01.003
[9] Bebrone, C., Delbruck, H., Kupper, M.B., Scholmer, P., Wilmann, C., Frere, J.M., Fischer, R., Galleni, M. and Hoffmann, K.M. (2009) The structure of the dizinc subclass B2 metallo-beta-lactamase CphA reveals that the second inhibitory zinc ion binds in the histidine site. Antimicrobial Agents and Chemotherapy, 53, 4464-4471.
http://dx.doi.org/10.1128/AAC.00288-09
[10] Fonseca, F., Bromley, E.H., Saavedra, M.J., Correia, A. and Spencer, J. (2011) Crystal structure of Serratia fonticolaSfh-I: Activation of the nucleophile in mono-zinc metallo-beta-lactamases. Journal of Molecular Biology, 411, 951-959.
http://dx.doi.org/10.1016/j.jmb.2011.06.043
[11] Leiros, H.K., Borra, P.S., Brandsdal, B.O., Edvardsen, K.S.W., Spencer, J., Walsh, T.R. and Samuelsen, O. (2012) Crystal structure of the mobile metallo-beta-lactamase AIM-1 from Pseudomonas aeruginosa: Insights into antibiotic binding and the role of Gln157. Antimicrobial Agents and Chemotherapy, 568, 4341-4353.
http://dx.doi.org/10.1128/AAC.00448-12
[12] Crowder, M.W., Walsh, T.R., Banovic, L., Pettit, M. and Spencer, J. (1998) Overexpression, purification, and characterization of the cloned metallo-beta-lactamase L1 from Stenotrophomonas maltophilia. Antimicrobial Agents and Chemotherapy, 424, 921-926.
[13] Wachino, J., Yoshida, H., Yamane, K., Suzuki, S., Matsui, M., Yamagishi, T., Tsutsui, A., Konda, T., Shibayama, K. and Arakawa, Y. (2011) SMB-1, a novel subclass B3 metallo-beta-lactamase, associated with ISCR1 and a class 1 integron, from a carbapenem-resistant Serratia marcescens clinical isolate. Antimicrobial Agents and Chemotherapy, 55, 5143-5149.
http://dx.doi.org/10.1128/AAC.05045-11
[14] Miraula, M., Brunton, C., Schenk, G. and Mitic, N. (2013) Identification and preliminary characterization of novel B3-type metallo-β-lactamases. American Journal of Molecular Biology, 3, 198-203.
[15] Vella, P., Miraula, M., Phelan, E., Leung, E.W., Ely, F., Ollis, D.L., McGeary, R.P., Schenk, G. and Mitic, N. (2013) Identification and characterization of an unusual metallo-beta-lactamase from Serratia proteamaculans. Journal of Biological Inorganic Chemistry, 18, 855-863.
http://dx.doi.org/10.1007/s00775-013-1035-z
[16] Guindon, S., Dufayard, J.F., Lefort, V., Anisimova, M., Hordijk, W. and Gascuel, O. (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Systematic Biology, 59, 307-321.
http://dx.doi.org/10.1093/sysbio/syq010
[17] Ivy, R.A., Farber, J.M., Pagotto, F. and Wiedmann, M. (2013) International life science institute north America Cronobacter (formerly Enterobacter sakazakii) isolate set. Journal of Food Protection, 76, 40-51.
http://dx.doi.org/10.4315/0362-028X.JFP-11-546
[18] Friedemann, M. (2009) Epidemiology of invasive neonatal Cronobacter (Enterobacter sakazakii) infections. European Journal of Clinical Microbiology & Infectious Diseases, 28, 1297-1304.
http://dx.doi.org/10.1007/s10096-009-0779-4
[19] Dong, Y.J., Bartlam, M., Sun, L., Zhou, Y.F., Zhang, Z. P., Zhang, C.G., Rao, Z. and Zhang, X.E. (2005) Crystal structure of methyl parathion hydrolase from Pseudomonas sp. WBC-3. Journal of Molecular Biology, 353, 655-663. http://dx.doi.org/10.1016/j.jmb.2005.08.057
[20] Cameron, A.D., Ridderstrom, M., Olin, B., and Mannervik, B. (1999) Crystal structure of human glyoxalase II and its complex with a glutathione thiolester substrate analogue. Structure, 7, 1067-1078.
http://dx.doi.org/10.1016/S0969-2126(99)80174-9
[21] Rasia, R.M. and Vila, A.J. (2002) Exploring the role and the binding affinity of a second zinc equivalent in B. cereus metallo-beta-lactamase. Biochemistry, 41, 1853-1860.
http://dx.doi.org/10.1021/bi010933n
[22] Hernandez Valladares, M., Felici, A., Weber, G., Adolph, H.W., Zeppezauer, M., Rossolini, G.M., Amicosante, G., Frere, J.M. and Galleni, M. (1997) Zn(II) dependence of the Aeromonas hydrophila AE036 metallo-beta-lactamase activity and stability. Biochemistry, 36, 11534-11541.
http://dx.doi.org/10.1021/bi971056h

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.