A Simple and Fast Separation Method of Fe Employing Extraction Resin for Isotope Ratio Determination by Multicollector ICP-MS

Abstract

A new, simple and fast separation method for Fe using an extraction chromatographic resin, Aliquat 336 (commercially available as TEVA resin) has been developed. A one milliliter column containing 0.33 mL TEVA resin on 0.67 mL CG-71C was used.Iron was adsorbed with 6mol·L-1 HCl + H2O2 on TEVA resin, and recovered with 2 mol·L-1HNO3. The recovery yield and total blank were 93.5 ± 6.5% and 6 ng, respectively. Theseparation method is simple, and takes < 2 hours. For evaluation of the Fe separation, Fe isotope ratios were measured by a double-spike method employing multicollector inductively coupled plasma source mass spectrometry (MC-ICP-MS) with repeatability of 0.06‰ (SD) for the standard solution and ~0.05‰ for the silicate samples. Therefore, the column chemistry developed in this study is a viable option for Fe isotope ratio measurement by MC-ICP-MS.

Share and Cite:

Makishima, A. (2013) A Simple and Fast Separation Method of Fe Employing Extraction Resin for Isotope Ratio Determination by Multicollector ICP-MS. International Journal of Analytical Mass Spectrometry and Chromatography, 1, 95-102. doi: 10.4236/ijamsc.2013.12012.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] E. P. Horwitz, M. L. Dietz, R. Chiarizia, H. Diamond, S. L. III Maxwell and M. R. Nelson, “Separation and Preconcentration of Actinides by Extraction Chromatography Using a Supported Liquid Anion-Exchanger—Application to the Characterization of High-Level Nuclear Waste Solutions,” Analytica Chimica Acta, Vol. 310, No. 1, 1995, pp. 63-78. http://dx.doi.org/10.1016/0003-2670(95)00144-O
[2] X.-J. Yang and C. Pin, “Separation of Hafnium and Zir- conium from Ti and Fe-Rich Geological Materials by Extraction Chromatography,” Analytical Chemistry, Vol. 71, No. 9, 1999, pp. 1706-1711. http://dx.doi.org/10.1021/ac980833w
[3] Z. Grahek and M. R. Macefat, “Isolation of Iron and Strontium from Liquid Samples Anddetermination of Fe-55 and Sr-89, Sr-90 in Liquid Radioactive Waste,” Analytica Chimica Acta, Vol. 511, No. 2, 2004, p. 339. http://dx.doi.org/10.1016/j.aca.2004.01.049
[4] A. Makishima and E. Nakamura, “Low-Blank Chemistry for Zn Stable Isotope Ratio Determination Using Extraction Chromatographic Resin and Double Spike-Multiple Collector-ICP-MS,” Journal of Analytical Atomic Spectrometry, Vol. 28, 2013, pp. 127-133. http://dx.doi.org/10.1039/c2ja30271c
[5] A. Makishima, M. Nakanishi and E. Nakamura, “A Group Separation Method of Ruthenium, Palladium, Rhenium, osmium, Iridium and Platinumusing Their Bromo Complexes and an Anion Exchange Resin,” Analytical Chemistry, Vol. 73, No. 21, 2001, pp. 5240-5248. http://dx.doi.org/10.1021/ac010615u
[6] D. M. Borrok, R. B. Wanty, W. I. Ridley, R. Wolf, P. J. Lamothe and M. Adams, “Separation of Copper, Iron, and Zinc from Complex Aqueous Solutions for Isotopic Meas- urement,” Chemical Geology, Vol. 242, No. 3-4, 2007, pp. 400-414. http://dx.doi.org/10.1016/j.chemgeo.2007.04.004
[7] N. Dauphas and O. Rouxel, “Mass Spectrometry and Natural Variations of Iron Isotopes,” Mass Spectrometry Reviews, Vol. 25, No. 4, 2006, pp. 515-550. http://dx.doi.org/10.1002/mas.20078
[8] M. H. Dodson, “A Theoretical Study of the Use of Internal Standards for Precise Isotopic Analysis by the Surface Ionization Technique: Part I—General First-Order Algebraic Solutions,” Journal of Scientific Instruments, Vol. 40, 1963, pp. 289-295. http://dx.doi.org/10.1088/0950-7671/40/6/307
[9] C. M. Johnson and B. L. Beard, “Correction of Instrumentally Produced Mass Fractionation during Isotopic Analysis of Fe by Thermal Ionization Mass Spectrometry,” International Journal of Mass Spectrometry, Vol. 193, No. 1, 1999, pp. 87-99. http://dx.doi.org/10.1016/S1387-3806(99)00158-X
[10] J. F. Rudge, B. C. Reynolds and B. Bourdon, “The Double Spike Toolbox,” Chemical Geology, Vol. 265, No. 3-4, 2009, pp. 420-431. http://dx.doi.org/10.1016/j.chemgeo.2009.05.010
[11] M.-A. Millet, J. A. Baker and C. E. Payne, “Ultra-Precise Stable Fe Isotope Measurement by High Resolution Multiple-Collector Inductively Coupled Plasma Mass Spectrometry with a 57Fe-58Fe Double Spike,” Chemical Geology, Vol. 304-305, 2012, pp. 18-25. http://dx.doi.org/10.1016/j.chemgeo.2012.01.021
[12] E. Nakamura, A. Makishima, T. Moriguti, K. Kobayashi, C. Sakaguchi, T. Yokoyama, R. Tanaka, T. Kuritani and H. Takei, “Comprehensive Geochemical Analyses of Small Amounts (100 mg) of Extraterrestrial Samples for the Analytical Competition Related to the Sample-Return Mission, MUSES-C,” The Institute of Space and Astronautical Science Report, SP No. 16, 2003, pp. 49-101.
[13] A. Makishima and E. Nakamura, “Determination of Ma- jor, Minor and Trace Elements in Silicate Samples by ICP-QMS and ICP-SFMS Applying Isotope Dilution-In- ternal Standardization (ID-IS) and Multi-Stage Internal Standardization,” Geostandards and Geoanalytical Research, Vol. 30, No. 3, 2006, pp. 245-271. http://dx.doi.org/10.1111/j.1751-908X.2006.tb01066.x
[14] T. Yokoyama, A. Makishima and E. Nakamura, “Evalua- tion of the Coprecipitation of Incompatible Trace Ele- ments with Fluoride during Silicate Rock Dissolution by Acid Digestion,” Chemical Geology, Vol. 157, No. 3, 1999, pp. 175-187. http://dx.doi.org/10.1016/S0009-2541(98)00206-X
[15] A. Makishima and E. Nakamura, “Precise Isotopic De- termination of Hf and Pb at Sub-Nano Gram Levels by MC-ICPMS Employing a Newly Designed Sample Cone and a Pre-Amplifier with a 1012 Ohm Register,” Journal of Analytical Atomic Spectrometry, Vol. 25, No. 11, 2010, pp. 1712-1716. http://dx.doi.org/10.1039/c0ja00015a
[16] A. Yamakawa, K. Yamashita, A. Makishima and E. Na- kamura, “Chemical Separation and Mass Spectrometry of Cr, Fe, Ni, Zn and Cu in Terrestrial and Extraterrestrial Materials Using Thermal Ionization Mass Spectrometry,” Analytical Chemistry, Vol. 81, No. 23, 2009, pp. 9787- 9794. http://dx.doi.org/10.1021/ac901762a
[17] P. D. P. Taylor, R. Maeck and P. De Bievre, “Determination of the Absolute Isotopic Composition and Atomic- Weight of a Reference Sample of Natural Iron,” Interna- tional Journal of Mass Spectrometry and Ion Processes, Vol. 121, No. 1-2, 1992, pp. 111-125. http://dx.doi.org/10.1016/0168-1176(92)80075-C
[18] N. Dauphas, P. E. Janney, R. A. Mendybaev, M. Wadhwa, F. M. Richter, A. M. Davis, M. van Zuilen, R. Hines and C. N. Foley, “Chromatographic Separation and Multicol- lection-ICPMS Analysis of Iron. Investigating Mass- Dependent and -Independent Isotope Effects,” Analytical Chemistry, Vol. 76, No. 19, 2004, pp. 5855-5863. http://dx.doi.org/10.1021/ac0497095
[19] A. Makishima and E. Nakamura, “New Preconcentration Technique of Zr, Nb, Mo, Hf, Ta and W Employing Coprecipitation with Ti Compounds: Its Application to Lu- Hf System and Sequential Pb-Sr-Nd-Sm Separation,” Geochemical Journal, Vol. 42, No. 2, 2008, pp. 199-206. http://dx.doi.org/10.2343/geochemj.42.199
[20] S. G. Nielsen, M. Rehk?mper, J. Baker and A. N. Halli- day, “The Precise and Accurate Determination of Thallium Isotope Compositions and Concentrations for Water Samples by MC-ICPMS,” Chemical Geology, Vol. 204, No. 1, 2004, pp. 109-124. http://dx.doi.org/10.1016/j.chemgeo.2003.11.006
[21] E. Nakamura, A. Makishima, K. Hagino and K. Okabe, “Accumulation of Radium in Ferruginous Protein Bodies Formed in Lung Tissue: Association of Resulting Radia- tion Hotspots with Malignant Mesothelioma and Other Malignancies,” Proceedings of the Japan Academy, Series B, Vol. 85, 2009, pp. 229-239. http://dx.doi.org/10.2183/pjab.85.229
[22] P. R. Craddock and N. Dauphas, “Iron Isotopic Composi- tions of Geological Reference Materials and Chondrites,” Geostandards and Geoanalytical Research, Vol. 35, No. 1, 2011, pp. 101-123. http://dx.doi.org/10.1111/j.1751-908X.2010.00085.x
[23] O. J. Rouxel, A. Bekker and K. J. Edwards, “Iron Isotope Constraints on the Archean and Paleoproterozoic Ocean Redox State,” Science, Vol. 307, No. 5712, 2005, pp. 1088- 1091. http://dx.doi.org/10.1126/science.1105692
[24] J. A. Schuessler, R. Schoenberg and O. Sigmarsson, “Iron and Lithium Isotope Systematics of the Hekla Volcano, Iceland—Evidence for Fe Isotope Fractionation during Magma Differentiation,” Chemical Geology, Vol. 258, No. 1-2, 2009, pp. 78-91. http://dx.doi.org/10.1016/j.chemgeo.2008.06.021
[25] B. L. Beard, C. M. Johnson, J. L. Skulan, K. H. Nealson, L. Cax and H. Sun, “Application of Fe Isotopes to Tracing the Geochemical and Biological Cycling of Fe,” Chemical Geology, Vol. 195, No. 1, 2003, pp. 87-117. http://dx.doi.org/10.1016/S0009-2541(02)00390-X
[26] S. Weyer, A. D. Anbar, G. P. Brey, C. Muenker, K. Mezger and A. B. Woodland, “Iron Isotope Fractionation during Planetary Differentiation,” Earth and Planetary Science Letters, Vol. 240, No. 2, 2005, pp. 251-264. http://dx.doi.org/10.1016/j.epsl.2005.09.023
[27] X. K. Zhu, Y. Guo, R. K. O’Nions, E. D. Young and R. D. Ash, “Isotopic Heterogeneity of Iron in the Early Solar Nebula,” Nature, Vol. 412, No. 6844, 2001, pp. 311-313. http://dx.doi.org/10.1038/35085525
[28] K. Kehm, E. H. Hauri, C. M. O’D. Alexander and R. W. Carlson, “High Precision Iron Isotope Measurements of Meteoritic Material by Cold Plasma ICP-MS,” Geo- chimica Cosmochimica Acta, Vol. 67, No. 15, 2003, pp. 2879-2891. http://dx.doi.org/10.1016/S0016-7037(03)00080-2

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.