Development of Impedimetric Biosensor for Total Cholesterol Estimation Based on Polypyrrole and Platinum Nanoparticle Multi Layer Nanocomposite


A novel impedimetric biosensor was fabricated for total cholesterol sensing based on platinum nanoparticle and polypyrrole multilayer nanocomposite electrode. The Pt nanoparticles (PtNP) electrochemically deposited between two polypyrrole layers on indium tin oxide (ITO) glass plates (PtNP/PPY/ITO) have offered high-electroactive surface area and favourable microenvironment for immobilization of cholesterol esterase (ChEt) and cholesterol oxidase (ChOx) resulting in enhanced electron transfer between the enzyme system and the electrode. Impedimetric response studies of the ChEt-ChOx/PtNP/ITO nanobioelectrode exhibit improved linearity (2.5 × 10-4 to 6.5 × 10-3 M/l), low detection limit (2.5 × 10-4 M/l), fast response time (25 s), high sensitivity (196 Ω/mM/cm-2) and a low value of the Michaelis-Menten constant (Km, 0.2 M/l) with a regression coefficient of 0.997.

Share and Cite:

K. Singh, R. Chauhan, P. Solanki and T. Basu, "Development of Impedimetric Biosensor for Total Cholesterol Estimation Based on Polypyrrole and Platinum Nanoparticle Multi Layer Nanocomposite," International Journal of Organic Chemistry, Vol. 3 No. 4, 2013, pp. 262-274. doi: 10.4236/ijoc.2013.34038.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] M. Nauck, W. Marz, J. Jarausch, H. Cobbaert, A. Sagers, D. Bernard. O. Delanghe, G. Honauer, P. Lehmann, E. Oestrich, A. Von Eckardstein, S. Walch, H. Wieland and G. Assmann, “Multicenter Evaluation of a Homogeneous assay for HDL-Cholesterol without Sample Pretreatment,” Clinical Chemistry, Vol. 43, No. 9, 1997, pp. 1622-1629.
[2] P. Norouzi1, F. Faridbod, E. Nasli-Esfahan, B. Larijani and M. R. Ganjali, “Cholesterol Biosensor Based on MWCNTs-MnO2 Nanoparticles Using FFT Continuous Cyclic Voltammetry,” International Journal Electrochemistry, Vol. 5, No. 7, 2010, pp. 1008-1017.
[3] Y. Chen and M. Gotoh, “Amperometric Needle-Type Glucose Sensor Based on a Modified Platinum Electrode with Diminished Response to Interfering Materials,” Analytical Chimica Acta, Vol. 265, No. 1, 1992, pp. 5-14.
[4] Z. Xu, X. Chen and S. Dong, “Electrochemical Biosensors Based on Advanced Bioimmobilization Matrices,” Trends in Analytical Chemistry, Vol. 25, No. 9, 2006, pp. 898-908.
[5] M. Tian, G. Wu and A. Chen, “Unique Electrochemical Catalytic Behavior of Pt Nanoparticles Deposited on TiO2 Nanotubes,” American Chemical Society Catalyst, Vol. 2, 2012, pp. 425-432.
[6] A. N. Hendji, P. Bataillard and N. Jaffrezic-Renault, “Covalent Immobilization of Glucose Oxidase on Silanized Platinum Microelectrode for the Monitoring of Glucose,” Sensors Actuators B, Vol. 15, 1993, pp. 127-134.
[7] S. B. Hall, E. A. Khudaish and A. L. Hart, “Electrochemical Oxidation of Hydrogen Peroxide at Platinum Electrodes. Part V: Inhibition by Chloride,” Electrochimica Acta, Vol. 45, No. 21, 2000, pp. 3573-3579.
[8] M. Hepel, “The Electrocatalytic Oxidation of Methanol at Finely Dispersed Platinum Nanoparticles in Polypyrrole Films,” Journal of Electrochemical Society, Vol. 145, No. 1, 1998, pp. 124-134.
[9] S. Mokrane, L. Makhlouf and N. Alonso-Vante, “Electrochemical Behaviour of Platinum Nanoparticles Supported on Polypyrrole (PPy)/C Composite,” ECS Transaction, Vol. 6, 2008, pp. 93-103.
[10] S. S. Jeon, C. Kim, J. Ko and S. S. Im, “Pt Nanoparticles Supported on Polypyrrole Nanospheres as a Catalytic Counter Electrode for Dye-Sensitized Solar Cells,” Journal of Physical Chemistry C, Vol. 115, No. 44, 2011, pp. 22035-22039.
[11] M. Yang, Y. Yang, H. Yang, G. Shen and R. N. Yu, “LayerBy-Layer Self-Assembled Multilayer Films of Carbon Nanotubes and Platinum Nanoparticles with Polyelectrolyte for the Fabrication of Biosensors,” Biomaterials, Vol. 27, 2006, pp. 246-255.
[12] H. Chen, R. Yuan, Y. Chai, J. Wang and W. Li, “Glucose Biosensor Based on Electrodeposited Platinum Nanoparticles and Three-Dimensional Porous Chitosan Membranes,” Biotechnology Letter, Vol. 32, No. 10, 2010, pp. 1401-1404.
[13] R. Bittman, “Cholesterol: Its functional and Metabolism in Biology and Medicine,” Plenum Press, New York, 1997.
[14] P. L. Yeagle, “Biology of Cholesterol,” CRC Press, Boca Raton, 1998.
[15] C. F. Ana Maria, B. Oliveira, G. M. Helena and A. P. Piedade, “An Electrochemical Bienzyme Membrane Sensor for Free Cholesterol,” Bioelectrochemistry Bioengineering, Vol. 28, 1992, pp. 105-115.
[16] T. Siao, Y. C. Chen and C. A. Lee, “Amperometric Cholesterol Biosensors Based on Carbon Nanotube-Chitosanplatinum-Cholesterol Oxidase Nanobiocomposite,” Sensors Actuators B, Vol. 135, No. 1, 2008, pp. 96-101.
[17] S. Brahim, D. Narinesing and A. Guiseppi-Elie, “Amperometric Determination of Cholesterol in Serum Using a Biosensor of Cholesterol Oxidase Contained within a Polypyrrole-Hydrogel Membrane,” Analytical Chimica Acta, Vol. 448, no. 1-2, 2001, pp. 27-36.
[18] M. K. Ram, P. Bertoncello, H. Ding, S. Paddeu and C. Nicolini, “Cholesterol Biosensors Prepared by Layer-ByLayer Technique,” Biosensors Bioelectronics, Vol. 16, No. 9, 2001, pp. 849-856.
[19] S. Brahim, D. Narinesing and A. Guiseppi-Elie, “Amperometric Determination of Cholesterol in Serum Using a Biosensor of Cholesterol Oxidase Contained within a Polypyrrole-Hydrogel Membrane,” Analytical Chimica Acta, Vol. 448, 2001, pp. 27-36.
[20] M. L. Moraes, N. C. de Souza, O. H. Caio, F. Marystela, P. Ubirajara, F. Rodrigues, R. Antonio, Jr., Z. Valtencir and N. O. Osvaldo, Jr., “Immobilization of Cholesterol Oxidase in LBL Films and Detection of Cholesterol Using ac Measurements,” Material Science Engineering C, Vol. 29, No. 2, 2009, pp. 442-447.
[21] S. Singh, A. Chaubey and B. D. Malhotra, “Amperometric Cholesterol Biosensor Based on Immobilized Cholesterol Esterase and Cholesterol Oxidase on Conducting Polypyrrole Films,” Analytical Chimica Acta, Vol. 502, No. 2, 2004, pp. 229-234.
[22] S. Suman, P. R. Solanki, M. K. Pandey and B. D. Malhotra, “Covalent Immobilization of Cholesterol Esterase and Cholesterol Oxidase on Polyaniline Films for Application to Cholesterol Biosensor,” Analytical Chimica Acta, Vol. 568, No. 1-2, 2006, pp. 126-132.
[23] S. Singh, P. R. Solanki, M. K. Pandey and B. D. Malhotra, “Cholesterol Biosensor Based on Cholesterol Esterase, Cholesterol Oxidase and Peroxidase Immobilized onto Conducting Polyaniline Films,” Sensors Actuators: B, Vol. 115, No. 1, 2006, pp. 534-541.
[24] G. Li, J. M. Liao, G. Q. Hu, N. Z. Ma and P. J. Wu, “Study of Carbon Nanotube Modified Biosensor for Monitoring Total Cholesterol in Blood,” Biosenor and Bioelectronics, Vol. 20, No. 10, 2005, pp. 2140-2144.
[25] P. R. Solanki, A. Kaushik, A. A. Ansari, A. Tiwari and B. D. Malhotra, “Multi-Walled Carbon Nanotubes/Sol-GelDerived Silica/Chitosan Nanobiocomposite for Total Cholesterol Sensor,” Sensors Actuators B, Vol. 137, No. 2, 2009, pp. 727-735.
[26] S. Aravamudhana, A. Kumarb, S. Mohapatra and S. Bhansali, “Sensitive Estimation of Total Cholesterol in Blood Using Au Nanowires Based Micro-Fluidic Platform,” Biosensors and Bioelectronics, Vol. 22, No. 9-10, 2007, p. 2289.
[27] S. K. Arya, P. Pandey, S. P. Singh, M. Datta and B. D. Malhotra, “Dithiobissuccinimidyl Propionate Self Assembled Monolayer Based Cholesterol Biosensor,” Analyst, Vol. 132, No. 10, 2007, pp. 1005-109.
[28] S. K. Arya, M. Datta, S. P. Singh and B. D. Malhotra, “Biosensor for Total Cholesterol Estimation Using N-(2-Aminoethyl)-3-aminopropyltrimethoxysilane Self-Assembled Monolayer,” Analytical Bioanalytical Chemistry, Vol. 389, 2007, pp. 2235-2242.
[29] K. Singh, P. R. Solanki, T. Basu and B. D. Malhotra, “Polypyrrole/Multiwalled Carbon Nanotubes Based Biosensor for Cholesterol Estimation,” Polymers for Advanced Techniques, Vol. 23, No. 7, 2011, pp. 1084-1091.
[30] R. Chauhan, Deepshikha and T. Basu, “Development of a Reusable Transducer Matrice Based on Nano Structured Based on Nano Structured Conducting Polyaniline and Its Application to Cholesterol Biosensor,” Science for Advanced Material, Vol. 4, No. 1, 2012, pp. 96-125.
[31] J. R. Macdonald, “Impedance Spectroscopy,” Wiley Interscience Publication, New York, 1987
[32] M. I. Prodromidis, “Impedimetric Biosensors and Immunosensors,” Pakistan Journal of Analytical Environmental Chemistry, Vol. 8, 2007, pp. 69-71.
[33] K. Singh, T. Basu, P. R. Solanki and B. D. Malhotra, “Poly(pyrrole-co-N-methyl pyrrole) for Application to Cholesterol Sensor,” Journal Material Science, Vol. 44, No. 4, 2009, pp. 954-961.
[34] T. K. Vishnuvardhan, V. R. Kulkarni, C. Basavaraja and S. C. Raghavendra, “Synthesis, Characterization and a.c. Conductivity of Polypyrrole/Y2O3 Composites, Bulletin,” Material Science, Vol. 29, No. 1, 2006, pp. 77-83.
[35] C. Dhand, S. K. Arya, M. Datta and B. D. Malhotra, “Polyaniline-Carbon Nanotube Composite Film for Cholesterol Biosensor,” Analytical Biochemistry, Vol. 383, No. 2, 2008, pp. 194-199.
[36] V. Nandakumara, J. T. La Belle, J. Reed, M. Shah, D. Cochran, L. Joshi and T. L. Alford, “A Methodology for Rapid Detection of Salmonella typhimurium Using LabelFree Electrochemical Impedance Spectroscopy,” Biosenors Bioelectronics, Vol. 24, No. 4, 2008, pp. 1039-1042.
[37] J. G. Guan, Y. Q. Miao and Q. J. Zhang, “Impedimetric biosensors,” Journal of Biosensor and Bioengineering, Vol. 97, No. 4, 2004, pp. 219-226,
[38] J. S. Daniels and N. Pourmand, “Label-Free Impedance Biosensors: Opportunities and Challenges,” Electroanalysis, Vol. 19, No. 12, 2007, pp. 1239-1257.
[39] Y. S. Fung and Y. Y. Wong, “Self-Assembled Monolayers as the Coating in a Quartz Piezoelectric Crystal Immunosensor to Detect Salmonella in Aqueous Solution,” Analytical Chemistry, Vol. 73, No. 21, 2001, pp. 5302-5309.
[40] C. E. H. Berger and J. Greve, “Differential SPR Immunosensing,” Sensors Actuators B, Vol. 63, No. 1, 2000, pp. 103-108.
[41] A. Kaushik, P. R. Solanki, K. Kaneto, C. G. Kim, S. Ahmad and B. D. Malhotra, “Nanostructured Iron Oxide Platform for Impedimetric Cholesterol Detection,” Electroanalysis, Vol. 22, No. 10, 2010, pp. 1045-1055.

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.