[1]
|
A. H. Bowker, “A Test for Symmetry in Contingency Tables,” Journal of the American Statistical Association, Vol. 43, No. 244, 1948, pp. 572-574. http://dx.doi.org/10.1080/01621459.1948.10483284
|
[2]
|
A. Agresti, “A Simple Diagonals-Parameter Symmetry and Quasi-Symmetry Model,” Statistics and Probability Letters, Vol. 1, No. 6, 1983, pp. 313-316. http://dx.doi.org/10.1016/0167-7152(83)90051-2
|
[3]
|
K. Yamamoto and S. Tomizawa, “Statistical Analysis of Case-Control Data of Endometrial Cancer Based on New Asymmetry Models,” Journal of Biometrics and Biostatistics, Vol. 3, No. 5, 2012, pp. 1-4. http://dx.doi.org/10.4172/2155-6180.1000147
|
[4]
|
N. Miyamoto, W. Ohtsuka and S. Tomizawa, “Linear Diagonals-Parameter Symmetry and Quasi-Symmetry Models for Cumulative Probabilities in Square Contingency Tables with Ordered Categories,” Biometrical Journal, Vol. 46, No. 6, 2004, pp. 664-674. http://dx.doi.org/10.1002/bimj.200410066
|
[5]
|
H. Yamamoto, T. Iwashita and S. Tomizawa, “Decomposition of Symmetry into Ordinal Quasi-Symmetry and Marginal Equimoment for Multi-way Tables,” Austrian Journal of Statistics, Vol. 36, No. 4, 2007, pp. 291-306.
|
[6]
|
K. Yamamoto and S. Tomizawa, “Analysis of Unaided Vision Data Using New Decomposition of Symmetry,” American Medical Journal, Vol. 3, No. 1, 2012, pp. 3742. http://dx.doi.org/10.3844/amjsp.2012.37.42
|
[7]
|
J. B. Lang and A. Agresti, “Simultaneously Modeling Joint and Marginal Distributions of Multivariate Categorical Responses,” Journal of the American Statistical Association, Vol. 89, No. 426, 1994, pp. 625-632. http://dx.doi.org/10.1080/01621459.1994.10476787
|
[8]
|
J. B. Lang, “On the Partitioning of Goodness-of-Fit Statistics for Multivariate Categorical Response Models,” Journal of the American Statistical Association, Vol. 91, No. 435, 1996, pp. 1017-1023. http://dx.doi.org/10.1080/01621459.1996.10476972
|
[9]
|
J. Aitchison, “Large-Sample Restricted Parametric Tests,” Journal of the Royal Statistical Society: Series B, Vol. 24, No. 1, 1962, pp. 234-250.
|
[10]
|
C. B. Read, “Partitioning Chi-Square in Contingency Tables: A Teaching Approach,” Communications in Statistics-Theory and Methods, Vol. 6, No. 6, 1977, pp. 553562. http://dx.doi.org/10.1080/03610927708827513
|
[11]
|
J. N. Darroch and S. D. Silvey, “On Testing More than One Hypothesis,” Annals of Mathematical Statistics, Vol. 34, No. 2, 1963, pp. 555-567. http://dx.doi.org/10.1214/aoms/1177704168
|
[12]
|
S. Tomizawa and K. Tahata, “The Analysis of Symmetry and Asymmetry: Orthogonality of Decomposition of Symmetry into Quasi-Symmetry and Marginal Symmetry for Multi-Way Tables,” Journal de la Société Francaise de Statistique, Vol. 148, No. 3, 2007, pp. 3-36.
|
[13]
|
K. Tahata, H. Yamamoto and S. Tomizawa, “Orthogonality of Decompositions of Symmetry into Extended Symmetry and Marginal Equimoment for Multi-Way Tables with Ordered Categories,” Austrian Journal of Statistics, Vol. 37, No. 2, 2008, pp. 185-194.
|
[14]
|
K. Tahata and S. Tomizawa, “Orthogonal Decomposition of Point-Symmetry for Multiway Tables,” Advances in Statistical Analysis, Vol. 92, No. 3, 2008, pp. 255-269. http://dx.doi.org/10.1007/s10182-008-0070-5
|
[15]
|
M. Haber, “Maximum Likelihood Methods for Linear and Log-Linear Models in Categorical Data,” Computational Statistics and Data Analysis, Vol. 3, No. 1, 1985, pp. 110. http://dx.doi.org/10.1016/0167-9473(85)90053-2
|
[16]
|
K. Tahata and S. Tomizawa, “Double Linear DiagonalsParameter Symmetry and Decomposition of Double Symmetry for Square Tables,” Statistical Methods and Applications, Vol. 19, No. 3, 2010, pp. 307-318. http://dx.doi.org/10.1007/s10260-009-0127-y
|
[17]
|
C. R. Rao, “Linear Statistical Inference and its Applications,” 2nd Edition, John Wiley, New York, 1973. http://dx.doi.org/10.1002/9780470316436
|
[18]
|
A. Agresti, “Analysis of Ordinal Categorical Data,” 2nd Edition, John Wiley, Hoboken, 2010. http://dx.doi.org/10.1002/9780470594001
|