Development of a Molecular Marker to Identify a Candidate Line of Turmeric (Curcuma longa L.) with a High Curcumin Content

Abstract

Dried and fresh rhizomes of the spice turmeric (Curcuma longa L.) are well known in traditional medicine, and curcu- min is widely used in various geographic regions. Although there are differences in the amount of curcumin within this species, identification of the candidate line by rhizome is difficult because of the relative simplicity of its morphological characteristics. To accurately identify lines of C. longa with a high content of curcumin, we analysed several sequences of chloroplast DNA. First, to determine the appropriate outgroup taxa in which to conduct infras-pecific analyses of C. longa, we reconstructed the molecular phylogenetic tree of C. longa and its allied species. The results showed that C. aromatica and C. zedoaria are closely related to C. longa. Next, to develop a molecular marker for identifying lines of C. longa with a high content of curcumin, a network analysis using chloroplast microsatellite regions was performed. Results showed that a unique haplotype within C. longa corresponds to the high curcumin content line. Therefore, the chloroplast microsatellite regions used for the analysis allowed us to determine the lines of this species with high cur- cumin content.

Share and Cite:

H. Hayakawa, T. Kobayashi, Y. Minaniya, K. Ito, A. Miyazaki, T. Fukuda and Y. Yamamoto, "Development of a Molecular Marker to Identify a Candidate Line of Turmeric (Curcuma longa L.) with a High Curcumin Content," American Journal of Plant Sciences, Vol. 2 No. 1, 2011, pp. 15-26. doi: 10.4236/ajps.2011.21002.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] T. W. Corson and C. M. Crews, “Molecular Understanding and Modern Application of Traditional Medicines: Triumphs and Trials,” Cell, Vol. 130, No. 5, 2007, pp. 769-774. doi:10.1016/j.cell.2007.08.021
[2] S. Singh, “From Exotic Spice to Modern Drug?” Cell, Vol. 130, No. 5, 2007, pp. 765-768. doi:10.1016/j.cell.2007.08.024
[3] Y. Sasaki, H. Fushimi, H. Cao, S. Q. Cai and K. Komatsu, “Sequence Analysis of Chinese and Japanese Curcuma Drugs on the 18S rRNA Gene and trnK Gene and the Ap- plication of Amplification-Refractory Mutation System Analysis for Their Authentication,” Biological & Pharmaceutical Bulletin, Vol. 25, No. 12, 2002, pp. 1593-1599. doi:10.1248/bpb.25.1593
[4] M. Minami, K. Nishio, Y. Ajioka, H. Kyushima, K. Shi- geki, K. Kinjo, K. Yamada, M. Nagai, K. Satoh and Y. Sakurai, “Identification of Curcuma Plants and Curcumin Content Level by DNA Polymorphisms in the trnS-trnfM intergenic Spacer in Chloroplast DNA,” Journal of Natural Medicines, Vol. 63, No. 1, 2009, pp. 75-79. doi:10.1007/s11418-008-0283-7
[5] K. Aoi, K. Kaburagi, T. Seki, T. Tobata, M. Sarak and M. Kuroyanagi, “Studies on the Cultivation of Turmeric (Curcuma longa L.) I: Varietal Differences in Rhizome Yield and Curcuminoid Content,” Bulletin of National Institute of Hygienic Sciences, Vol. 104, 1986, 124-128.
[6] M. N. Tamura, J. Yamashita, S. Fuse and M. Hamaguchi, “Molecular Phylogeny of Monocotyledons Inferred from Combined Analysis of Plastid matK and rbcL Gene Se- quences,” Journal of Plant Research, Vol. 117, No. 2, 2004, pp. 109-120. doi:10.1007/s10265-003-0133-3
[7] D. E. Soltis and P. S. Soltis, “Choosing an Approach and an Appropriate Gene for Phylogenetic Analysis,” In: D. E. Soltis, P. S. Soltis and J. J. Doyle, Eds. Molecular Sys- tematics of Plants II. Kluwer Academic Publishers, Boston, 1998, pp. 1-42.
[8] R. G. Olmstead and P. A. Reeves, “Evidence for the Polyphyly of the Scrophulariaceae Based on Chloroplast rbcL and ndhF Sequences,” Annals of the Missouri Botanical Garden, Vol. 82, No. 2, 1995, pp. 176-193. doi:10.2307/2399876
[9] T. Nishizawa and Y. Watano, “Primer Pairs Suitable for PCR-SSCP Analysis of Chloroplast DNA in Angiosperms,” Journal of Phytogeography and Taxonomy, Vol. 48, No. 1, 2000, pp. 67-70.
[10] S. A. Kelchner, “The Evolution of Non-Coding Chloroplast DNA and Its Application in Plant Systematics,” Annals of the Missouri Botanical Garden, Vol. 87, No. 4, 2000, pp. 482-498. doi:10.2307/2666142
[11] D. Posada and K. A. Crandall, “Intraspecific Gene Gene- Alogies: Trees Grafting into Networks,” Trends in Ecology & Evolution, Vol. 16, No. 1, 2001, pp. 37-45. doi:10.1016/S0169-5347(00)02026-7
[12] M. Sato, K. Shimura and K. Hashizume, “Quality Valua- Tion of Turmeric Powders on Market,” Mie Prefectural Health and Environment Research Institution, Vol. 6, 2004, pp. 52-54.
[13] L. A. Johnson and D. E. Soltis, “matK DNA Sequences and Phylogenetic Reconstruction in Saxifragaceae s.str.,” Systematic Botany, Vol. 19, No. 1, 1994, pp. 143-156. doi:10.2307/2419718
[14] J. D. Thompson, D. G. Higgins and T. J. Gibson, “CLUS- TAL W: Improving the Sensitivity of Progressive Multiple Sequence Alignment through Sequence Weighting, Positions-Specific Gap Penalties and Weight Matrix Choice,” Nucleic Acids Research, Vol. 22, No. 22, 1994, pp. 4673-4680. doi:10.1093/nar/22.22.4673
[15] K. Tamura, J. Dudley, M. Nei and S. Kumar, MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software. Version 4.0,” Molecular Biology and Evolution, Vol. 24, No. 8, 2007, pp. 1596-1599. doi:10.1093/molbev/msm092
[16] D. L. Swofford, “paup*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4,” Sinauer Associates, Sunderland, MA. 2001.
[17] H. J. Bandelt, P. Forster and A. R?hl, “Median-Joining Networks for Inferring Intraspecific Phylogenies,” Molecular Biology and Evolution, Vol. 16, No. 1, 1999, pp. 37-48.
[18] T. Morishita, H. Yamaguchi, K. Degi, T. Shimizu and H. Nakagawa, “Varietal Difference and Year-to-Year Variation of the Contents of Curcuminoids in Turmeric,” Japanese Journal of Crop Sciences, Vol. 75, 2006, pp. 130-131. doi:10.1626/jcs.75.335
[19] A. B. Utelli, B. A. Roy and M. Baltisberger, “Molecular and morphological analysis of European Aconitum spe- cies (Ranunculaceae),” Plant Systematics and Evolution, Vol. 224, No. 3-4, 2000, pp. 195-212. doi:10.1007/BF00986343
[20] S. T. Malcomber, “Phylogeny of Gaertinera Lam. (Lu- biaceae) Based on Multiple DNA Markers: Evidence of Rapid Radiation in a Widespread, Morphologically Diverse Genus,” Evolution, Vol. 56, No. 1, 2002, pp. 42-57.
[21] B. G. Baldwin, “Adaptive Radiation of Hawaiian Silvers- Word Alliance: Congruence and Conflict of Phylogenetic Evidence from Molecular and Non-Molecular Investiga- Tions,” In: T. J. Givnish and K. J. Sytsma, Eds., Molecu- lar Evolution and Adaptive Radiation, Cambridge Uni- versity Press, Cambridge, 1997, pp. 103-128.
[22] J. Francisco-Ortega, D. J. Crawford, A. S. Guerra and R. K. Jansen, “Origin and Evolution of Argyranthmum (As- teraceae: Anthemideae) in Macaronesia,” In: T. J. Givnish and K. J. Sytsma, Eds., Molecular Evolution and Adap- tive Radiation, Cambridge University Press, Cambridge, 1997, pp. 407-431.
[23] K. F. Liem, “Key Evolutionary Innovations, Differential Diversity, and Symecomorphosis,” In: M. Nitecki, Ed., Evolutionary Innovations, University of Chicago Press, Chicago, 1990, pp. 147-170.
[24] S. A. Hodges and M. L. Arnold, “Columbines: A Geographically Widespread Species Flock,” Proceedings of the National Academy of Sciences of the USA, Vol. 91, No. 11, 1994, pp. 5129-5132. doi:10.1073/pnas.91.11.5129
[25] J. Provan, N. Soranzo, N. J. Wilson, J. W. McNicol, M. Morgante and W. Powell, “The Use of Uniparentally In- herited Simple Sequence Repeat Markers in Plant Popula- tion Studies and Systematics,” In: P. M. Hollingsworth, R. M. Bateman and R. J. Gornall, Eds., Molecular Systemat- ics and Plant Evolution, Taylor & Francis, London, 1999, pp. 1-19.
[26] B. R. Morton and M. T.Clegg, “A Chloroplast DNA Mu- tational Hotspot and Gene Conversion in a Noncoding Region near rbcL in the Grass Family (Poaceae),” Current Genetics, Vol. 24, No. 4, 1993, pp. 357-365. doi:10.1007/BF00336789
[27] D. A. Johnson and J. Hattori, “Analysis of a Hotspot for Deletion Formation within the Intron of the Chloroplast trnI Gene,” Genome, Vol. 39, No. 5, 1996, pp. 999-1005. doi:10.1139/g96-124
[28] S. A. Kelchner and J. F. Wendel, “Hairpins Create Minute Inversions in Non-Coding Regions of Chloroplast DNA,” Current Genetics, Vol. 30, No. 3, 1996, pp. 259-262. doi:10.1007/s002940050130
[29] D. Cafasso, G. Pellegrino, A. Musacchio, A. Widmer and S. Cozzolino, “Characterization of a Minisatellite Repeat Locus in the Chloroplast Genome of Orchis palustris (Orchidaceae),” Current Genetics, Vol. 39, No. 5-6, 2001, pp. 394-398. doi:10.1007/s002940100226
[30] R. A. King and C. Ferris, “A Variable Minisatellite Se- quence in the Chloroplast Genome of Sorbus L. (Rosaceae: Maloideae),” Genome, Vol. 45, No. 3, 2002, pp. 570-576. doi:10.1139/g02-018
[31] D. H. Darling and J. H. Werren, “Biosystematics of Na- sonia (Hymenoptera: Pteromalidae): Two New Species Reared from Birds’ Nests in North America,” Annals of the Entomological Society of America, Vol. 83, No. 3, 1990, pp. 352-370.
[32] E. M. Barratt, R. Deaville, T. M. Burl, M. W. Bruford, G. Jones, P. A. Racey and R. K. Wayne, “DNA Answers the Call for Pipistrelle Bat Species,” Nature, Vol. 387, 1997, pp. 138-139. doi:10.1038/387138b0
[33] I. D. Hogg, M. I. Stevens, K. E. Schnabel and M. A. Chapman, “Deeply Divergent Lineages of the Widespread New Zealand Amphipod Paracalliope Fluviatilis Revealed Using Allozyme and Mitochondrial DNA Analyses,” Freshwater Biology, Vol. 51, No. 2, 2006, pp. 236-248. doi:10.1111/j.1365-2427.2005.01491.x
[34] T. Tully, C. A. D'Haese, M. Richard and R. Ferriere, “Two Major Evolutionary Lineages Revealed by Molecular Phylogeny in the Parthenogenetic Collembola Species Folsomia Candida,” Pedobiologia, Vol. 50, No. 2, 2006, pp. 95-104. doi:10.1016/j.pedobi.2005.11.003
[35] D. Bickford, D. J. Lohman and N. S. Sodhi, “Cryptic Species as a Window on Diversity and Conservation,” Trends in Ecology & Evolution, Vol. 22, No. 3, 2007, pp.148-155. doi:10.1016/j.tree.2006.11.004
[36] T. L. Finston, M. S. Johnson, W. F. Humphreys, S. M. Eberhard and S. A. Halse, “Cryptic Speciation in Two Widespread Subterranean Amphipod Genera Reflects Historical Drainage Patterns in an Ancient Landscape,” Molecular Ecology, Vol. 16, No. 2, 2007, pp. 355-365. doi:10.1111/j.1365-294X.2006.03123.x
[37] B. C. Schlick-Steiner, B. Seifert and C. Stauffer, “With- out Morphology, Cryptic Species Stay in Taxonomic Crypsis Following Discovery,” Trends in Ecology & Evolution, Vol. 22, No. 8, 2007, pp. 391-392. doi:10.1016/j.tree.2007.05.004

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.