Regulation of Respiratory and Ligninolytic Enzyme Activity of Lentinula edodes by Selenium


The production of mushrooms enriched with essential elements, e.g. selenium, for human health is an interesting strategy to improve the functional foods supply. The selenium is an essential mineral and makes part of structure of enzymes involved in the oxidative metabolism. However, the selenium effect on the activity of respiratory and lignocellulolytic enzymes has not been considered. The understanding of this effect is important to determine the selenium concentration that increases the mushroom productivity and the degradation rate of the substrate. In this study, it was observed reduction of the respiratory activity of Lentinula edodes (Berk.) Pegler, the shiitake mushroom, in function of the increasing of the sodium selenite concentration in the substrate (p < 0.05). Selenium did not inhibit the activity of the hydrolytic enzymes (cellulase and xylanase), but it increased the activity of the oxidative enzyme (laccase). Respiratory activity of L. edodes has a negative correlation with sodium selenite concentration added in substrate. Thus is important to define the ideal dose of selenium to be added to the substrate for increasing lignocellulosic residues degradation and, consequently, guarantee a higher production of Se-enriched mushrooms.

Share and Cite:

R. Nunes, J. Luz, E. Fantuzzi, M. Kasuya and M. Vanetti, "Regulation of Respiratory and Ligninolytic Enzyme Activity of Lentinula edodes by Selenium," Advances in Microbiology, Vol. 3 No. 8A, 2013, pp. 31-36. doi: 10.4236/aim.2013.38A006.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] S. G. Villas-Bâas, E. Esposito and D. A. MitchelL, “Microbial Conversion of Lignocellulosic Residues for Production of Animal Feeds,” Animal Feed Science and Technology, Vol. 98, No. 1, 2002, pp. 1-12.
[2] G. F. Leatham, “Extracellular Enzymes Produced by the Cultivated Mushroom Lentinus edodes during Degradation of a Lignocellulosic Medium,” Applied and Environmental Microbiology, Vol. 50, No. 4, 1985, pp. 859-867.
[3] J. R. P. Cavallazzi, M. S. Brito, M. G. A. Oliveira, S. G. Villas-Bôas and M. C. M. Kasuya, “Lignocellulolytic Enzymes Profile of Three Lentinula edodes (Berk.) Pegler Strains during Cultivation on Eucalyptus Bark-Based Medium,” Journal of Food Agriculture and Environment, Vol. 2, No. 1, 2004, pp. 291-297.
[4] E. M. Silva, A. Machuca and A. M. F. Milagres, “Evaluating the Growth and Enzyme Production from Lentinula edodes Strains,” Process Biochemistry, Vol. 40, No. 1, 2005, pp. 161-164.
[5] V. Elisashvili, M. Penninckx, E. Kachlishvili, N. Tsiklauri, E. Metreveli, T. Kharziani and G. Kvesitadze, “Lentinus edodes and Pleurotus Species Lignocellulolytic Enzymes Activity in Submerged and Solid-State Fermentation of Lignocellulosic Wastes of Different Composition,” Bioresource Technology, Vol. 99, No. 3, 2008, pp. 457-462.
[6] A. Philippoussis, P. Diamantopoulou, K. Papadopoulou, H. Lakhtar, S. Roussos, G. Parissopoulos and S. Papanikolaou, “Biomass, Laccase and Endoglucanase Production by Lentinula edodes during Solid State Fermentation of Reed Grass, Bean Stalks and Wheat Straw Residues,” World Journal of Microbiology and Biotechnology, Vol. 27, No. 2, 2011, pp. 285-297.
[7] S. Ohga and D. J. Royse, “Transcriptional Regulation of Laccase and Cellulase Genes during Growth and Fruiting of Lentinula edodes on Supplemented Sawdust,” FEMS Microbiology Letters, Vol. 201, No. 1, 2001, pp. 111-115.
[8] A. Philippoussis, P. Diamantopoulou and C. Israilides, “Productivity of Agricultural Residues Used for the Cultivation of the Medicinal Fungus Lentinula edodes,” International Biodeterioration and Biodegradation, Vol. 59, 2007, pp. 216-219.
[9] K. B. P. B. Casaril, M. C. M. Kasuya and M. C. D. Vanetti, “Antimicrobial Activity and Mineral Composition of Shiitake Mushrooms Cultivated on Agricultural Waste,” Brazilian Archives of Biology and Technology, Vol. 54, No. 5, 2011, pp. 991-1002.
[10] L. S. de Assunção, J. M. R. da Luz, M. C. S. da Silva, P. A. F. Vieira, D. M. S. Bazzolli, M. C. D. Vanetti and M. C. M. Kasuya, “Enrichment of Mushrooms: An Interesting Strategy for the Acquisition of Lithium,” Food Chemistry, Vol. 134, No. 2, 2012, pp. 1123-1127.
[11] R. G. F. L. Nunes, J. M. R. da Luz, R. B. Freitas, A. Higuchi, M. C. M. Kasuya and M. C. D Vanetti, “Selenium Bioaccumulation in Shiitake Mushrooms: A Nutritional Alternative Source of This Element,” Food Science and Technology International, Vol. 77, 2012, pp. c983-c986.
[12] M. C. S. da Silva, J. Naozuka, J. M. R. da Luz, L. S. de Assunìão, P. V. Oliveira, M. C. D. Vanetti, D. M. S. Bazzolli and M. C. M. Kasuya, “Enrichment of Pleurotus ostreatus Mushrooms with Selenium in Coffee Husks,” Food Chemistry, Vol. 131, No. 2, 2012, pp. 558-563.
[13] J. Turlo, B. Gutkowska and F. H. Banacha, “Effect of Selenium Enrichment on Antioxidant Activities and Chemical Composition of Lentinula edodes (Berk.) Pegl. Mycelial Extracts,” Food and Chemistry Toxicology, Vol. 48, No. 4, 2010, pp. 1085-1091.
[14] B. C. Allan, G. M. Lacourciere and T. C. Stadtman, “Responsiveness of Selenoproteins to Dietary Selenium,” Annual Review of Nutrition, Vol. 19, 1999, pp. 1-16.
[15] J. Koehrle, “The Trace Element Selenium and the Thyroid Gland,” Biochimie, Vol. 81, No. 5, 1999, pp. 527-533.
[16] M. M. Gharie, S. C. Wilkinson and G. M. Gadd, “Reduction of Selenium Oxyanions by Unicellular, Polymorphic and Filamentous Fungi: Cellular Location of Reduced Selenium and Implications for Tolerance,” Journal of Industrial Microbiology and Biotechnology, Vol. 14, No. 3-4, 1995, pp. 300-311.
[17] O. Heinemeyer, H. Insam, E. A. Kaiser and G. Walenzik, “Soil Microbial Biomass and Respiration Measurements: An Automated Technique Based on Infra-Red Gas Analysis,” Plant Soil, Vol. 116, No. 2, 1989, pp. 191-195.
[18] J. M .R. da Luz, M. D. Nunes, S. A. Paes, D. P. Torre, M. C. S. Silva and M. C. M. Kasuya, “Lignocellulolytic Enzyme Production of Pleurotus ostreatus Growth in Agroindustrial Wastes,” Brazilian Journal of Microbiology, Vol. 43, No. 4, 2012, pp. 1508-1515.
[19] J. A. Buswell, Y. J. Cai, S. T. Chang, J. F. Pederby, S. Y. Fu and H. S. Yu, “Lignocellulolytic Enzyme Profiles of Edible Mushroom,” World Journal of Microbiology and Biotechnology, Vol. 12, No. 5, 1996, pp. 537-542.
[20] M. Mandels, R. Andreotti and C. Roche, “Measurement of Saccharifying Cellulase,” Biotechnology and BioengineeringSymposium, Vol. 6, 1976, pp. 21-33.
[21] M. J. Barley, P. Biely and K. Poutanen, “Interlaboratory Testing of Methods for Xylanase Activity,” Journal of Biotechnology, Vol. 23, 1992, pp. 257-270.
[22] G. L. Miller, “Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar,” Analytical Biochemistry, Vol. 31, No. 3, 1959, pp. 426-428.
[23] M. M. Bradford, “A Rapid and Sensitive Method for Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye-Binding,” Analytical Biochemistry, Vol. 72, 1976, pp. 248-254.
[24] R. G. F. L. Nunes, “Biological Activity of Lentinula edodes and Shiitake Production in the Substrate Se-Enriched,” Ph.D. Thesis, Federal University of Viçosa, Viçosa, 2005.
[25] S. G. Jonathan and I. O. Fasidi, “Effect of Carbon, Nitrogen and Mineral Sources on Growth of Psathyerella atroumbonata (Pegler), a Nigerian Edible Mushroom,” Food Chemistry, Vol. 72, No. 4, 2001, pp. 479-483.
[26] A. B. Darlington and W. E. Rauser, “Cadmium Alters the Growth of the Mycorrhizal Fungus Paxillus involutus: A New Growth Model Accounts for Changes in Branching,” Canadian Journal of Botany, Vol. 66, No. 2, 1988, pp. 225-229.
[27] G. M. Gadd, L. Ramsay, J. W. Crawford and K. Ritz, “Nutritional Influence on Fungal Colony Growth and Biomass Distribution in Response to Toxic Metals,” FEMS Microbiology Letters, Vol. 204, No. 2, 2001, pp. 311-316.
[28] A. Robles, R. Lucas, M. Martinez-Cañamero, N. B. Omar, R. Pérez and A. Gálvez, “Characterization of Lacase Activity Produced by the Hyphomycete Chalara (Syn. Thielaviopsis) paradoxa CH32,” Enzyme and Microbial Technology, Vol. 31, No. 4, 2002, pp. 516-522.
[29] N. Hatvani and I. Mécs, “Effects of Certain Heavy Metals on the Growth, Dye Decolorization, and Enzyme Activity of Lentinula edodes,” Ecotoxicology and Environmental Safety, Vol. 55, No. 2, 2003, pp. 199-203.
[30] P. Baldrian and J. Gabriel, “Copper and Cadmium Increase Laccase Activity in Pleurotus ostreatus,” FEMS Microbiology Letters, Vol. 206, No. 1, 2002, pp. 69-74.
[31] P. Baldrian, V. Valásková, V. Merhautová and J. Gabriel, “Degradation of Lignocellulose by Pleurotus ostreatus in the Presence of Copper, Manganese, Lead and Zinc,” Research in Microbiology, Vol. 156, No. 5-6, 2005, pp. 670-676.
[32] F. Alemawor, V. P. Dzogbefia, E. O. K. Oddoye and J. H. Oldham, “Effect of Pleurotus ostreatus Fermentation on Cocoa Pod Husk Composition: Influence of Fermentation Period and Mn2+ Supplementation on the Fermentation Process,” African Journal of Biotechnology, Vol. 8, No. 9, 2009, pp. 1950-1958.
[33] N. Kulkarni, A. Shendye and M. Rao, “Molecular and Biotechnological Aspects of Xylanases,” FEMS Microbiology Letters, Vol. 23, No. 4, 1999, pp. 411-456.
[34] J. P. Franzidis and A. Proteus, “Review of Recent Research on the Development of Cellulose,” In: D. L. Klass and G. H. Emert, Eds., Fuels from Biomass and Waste, Michigan, 1981, pp. 519-531.
[35] D. Fengel and G. Wegener, “Wood-Chemistry Ultra Structure Reactions,” De Gruyter, New York, 1989, p. 615.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.