UAV Thermal Infrared Remote Sensing of an Italian Mud Volcano


Extreme environments like active volcanoes exhibit many difficulties in being studied by in situ techniques. For example, during eruptions, summit areas are very hard to be accessed because of logistics problems and/or volcanic hazards. The use of remote sensing techniques in the last 20 years by satellite or airborne platforms has proven their capabilities in mapping and monitoring the evolution of volcanic activity. This approach has become increasingly important, as much interest is actually focused on understanding precursory signals to volcanic eruptions. In this work we verify the use of cutting-edge technology like unmanned flying system thermally equipped for volcanic applications. We present the results of a flight test performed by INGV in collaboration with the University of Bologna (Aerospace Division) by using a multi-rotor aircraft in a hexacopter configuration. The experiment was realized in radio controlled mode to overcome many regulation problems which, especially in Italy, limit the use of this system in autonomous mode. The overall goal was not only qualitative but also quantitative oriented. The system flew above an Italian mud volcano, named Le Salinelle, located on the lower South West flank of Mt. Etna volcano, which was chosen as representative site, providing not only a discrimination between hot and cold areas, but also the corresponding temperature values. The in-flight measurements have been cross-validated with contemporaneous in-situ acquisition of thermal data and from independent measurements of mud/water temperature.

Share and Cite:

S. Amici, M. Turci, S. Giammanco, L. Spampinato and F. Giulietti, "UAV Thermal Infrared Remote Sensing of an Italian Mud Volcano," Advances in Remote Sensing, Vol. 2 No. 4, 2013, pp. 358-364. doi: 10.4236/ars.2013.24038.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] R. Wright, L. L. Flynn, H. Garbeil, A. Harris and E. Pilger, “Automated Volcanic Eruption Detection Using MODIS,” Remote Sensing of Environment, Vol. 82, No. 1, 2002, pp. 135-155.
[2] S. Corradini, C. Spinetti, E. Carboni, C. Tirelli, M. F. Buongiorno, et al., “Mt. Etna Tropospheric Ash Retrieval and Sensitivity Analysis Using Moderate Resolution Imaging Spectroradiometer Measurements,” Journal of Applied Remote Sensing, Vol. 2, No. 1, 2008, Article ID: 023550.
[3] S. Corradini, L. Merucci, A. J. Prata and A. Piscini, “Volcanic Ash and SO2 in the 2008 Kasatochi Eruption: Retrievals Comparison from Different IR Satellite Sensors,” Journal of Geophysical Research Atmospheres, Vol. 115, No. D2, 2010, pp. 2156-2202.
[4] D. Pieri and M. Abrams, “ASTER Watches the World’s Volcanoes: A New Paradigm for Volcanological Observations from Orbit,” Journal of Volcanology and Geothermal Research, Vol. 135, No. 1-2, 2004, pp. 13-28.
[5] V. Lombardo, M. F. Buongiorno, D. Pieri and L. Merucci, “Differences in Landsat TM Derived Lava Flow Thermal Structures during Summit and Flank Eruption at Mount Etna,” Journal of Volcanology and Geothermal Research, Vol. 134, No. 1-2, 2004, pp. 15-34.
[6] C. Spinetti, V. Carrère, M. F. Buongiorno, A. J. Sutton and T. Elia, “Carbon Dioxide of Pu`u`O`o Volcanic Plume at Kilauea Retrieved by AVIRIS Hyperspectral Data,” Remote Sensing of Environment, Vol. 112, No. 6, 2008, pp. 3192-3199.
[7] D. Pieri and M. Abrams, “ASTER Observations of Thermal Anomalies Preceding the April 2003 Eruption of Chikurachki Volcano, Kurile Islands, Russia,” Remote Sensing of Environment, Vol. 99, No. 1-2, 2005, pp. 84-94.
[8] R. Schick, “Volcanic Tremor-Source Mechanisms and Correlation with Eruptive Activity,” Natural Hazards, Vol. 1, No. 2, 1988, pp. 125-144.
[9] M. Cosentino, G. Lombardo and E. Privitera, “A Model for Internal Dynamical Processes on Mt Etna,” Geophysical Journal International, Vol. 97, No. 3, 1989, pp. 367-379.
[10] W. J. Glyn and R. Hazel, “Detecting Volcanic Eruption Precursors: A New Method Using Gravity and Deformation Measurements,” Journal of Volcanology and Geothermal Research, Vol. 113, No. 3-4, 2002, pp. 379-389.
[11] A. Aiuppa, R. Moretti, C. Federico, G. Giudice, S. Gurrieri, M. Liuzzo, P. Papale, H. Shinohara and M. Valenza, “Forecasting Etna Eruptions by Real-Time Observation of Volcanic Gas Composition,” Geology, Vol. 35, No. 12, 2007, pp. 1115-1118.
[12] V. Lombardo and M. F. Buongiorno, “Temperature Distribution Analysis of July 2001 Mt. Etna Eruption Observed by the Airborne Hyperspectral Sensor MIVIS,” Annals of Geophysics, Vol. 46, No. 6, 2003, pp. 1217-1228.
[13] S. Calvari, L. Spampinato, L. Lodato, A. J. L. Harris, M. R. Patrick, J. Dehn, M. R. Burton and D. Andronico, “Chronology and Complex Volcanic Processes during the 2002-2003 Flank Eruption at Stromboli Volcano (Italy) Reconstructed from Direct Observations and Surveys with a Handheld Thermal Camera,” Journal of Geophysical Research: Solid Earth, Vol. 110, No. B2, 2005, Article ID: B02201.
[14] G. Chiodini, G. Vilardo, V. Augusti, D. Granieri, S. Caliro, C. Minopoli and C. Terranova, “Thermal Monitoring of Hydrothermal Activity by Permanent Infrared Automatic Stations: Results Obtained at Solfatara di Pozzuoli, Campi Flegrei (Italy),” Journal of Geophysical Research: Solid Earth, Vol. 112, No. B12, 2007, Article ID: B12206.
[15] C. Spinetti and M. F. Buongiorno, “Volcanic Aerosol Optical Characteristics of Mt. Etna Tropospheric Plume Retrieved by Means of Airborne Multispectral Images,” Journal of Atmospheric and Solar-Terrestrial Physics, Vol. 69, No. 9, 2007, pp. 981-994.
[16] L. Spampinato, S. Calvari, C. Oppenheimer and L. Lodato, “Shallow Magma Transport for the 2002-3 Mt. Etna Eruption Inferred from Thermal Infrared Surveys,” Journal of Volcanology and Geothermal Research, Vol. 177, No. 2, 2008, pp. 301-312.
[17] A. J. L. Harris, L. Lodato, J. Dehn and L. Spampinato, “Thermal Characterization of the Vulcano Fumarole Field,” Bulletin of Volcanology, Vol. 71, No. 4, 2009, pp. 441-458.
[18] P. Allard, M. Burton and F. Muré, “Spectroscopic Evidence for a Lava Fountain Driven by Previously Accumulated Magmatic Gas,” Nature Letters, Vol. 433, No. 7024, 2005, pp. 407-410.
[19] L. Spampinato, S. Calvari, C. Oppenheimer and E. Boschi, “Volcano Surveillance Using Infrared Cameras,” Earth-Science Reviews, Vol. 106, No. 1-2, 2011, pp. 63-91.
[20] S. Amici, G. M. Saggiani, M. F Buongiorno, F. Persiani, A. Ceruti, P. Tortora, E. Troiani, F. Giulietti, G. DiStefano, D. Pieri, G. G. Bentini M. Bianconi, A. Cerutti, A. Nubile, S. Sugliani, S. Chiarini, G. Pennestrì and S. Petrini, “A UAV System for Observing Volcanoes and Natural Hazards,” Fall Meeting of American Geophysical Union, San Francisco, 11-14 December 2007.
[21] G. M. Saggiani, F. Persiani, A. Ceruti, P. Tortora, E. Troiani, F. Giulietti, S. Amici, M. F. Buongiorno, G. G. Bentini, M. Bianconi, A. Cerutti, A. Nubile, S. Sugliani, M. Chiarini, G. Pennestrì, S. Petrini and R. Guzzi, “UAV System Development for the Monitoring and Study Volcanic and Natural Hazard Events,” Proceeding of RSPSOC, New Castle, 11-14 September 2007.
[22] M. Turci, S. Amici, M. F. Buongiorno, F. Giulietti and N. A. Melega, “A Thermal EYE on Unmanned Aircraft System,” Technical Report INGV, 2011, ISSN-2039-7941, n. 210.
[23] S. Catalano, S. Torrisi and C. Ferlito, “The Relationship between Late Quaternary Deformation and Volcanism of Mt. Etna (eastern Sicily): New Evidence from the Sedimentary Substratum in the Catania Region,” Journal of Volcanology and Geothermal Research, Vol. 132, No. 4, 2004, pp. 311-334.
[24] S. Branca, M. Coltelli and G. Groppelli, “Geological Evolution of Etna Volcano,” In: A. Bonaccorso, S. Calvari, M. Coltelli, C. Del Negro and S. Falsaperla, Eds., Mt. Etna: Volcano Laboratory, American Geophysical Union, Washington DC, 2004, pp. 49-63.
[25] D. K. Chester, A. M. Duncan, J. E. Guest and C. R. J. Kilburn, “Mount Etna: The Anatomy of a Volcano,” Chapman and Hall, London, 1985.
[26] P. Y. Gillot, G. Kieffer and R. Romano, “The Evolution of Mount Etna in the Light of Potassium-Argon Dating,” Acta Vulcanologica, Vol. 5, 1994, pp. 81-87.
[27] M. Condomines, J. Tanguy and V. Michaud, “Magma Dynamics at Mt. Etna—Constraints from U-Th-Ra-Pb Radioactive Disequilibria and Sr Isotopes in Historical Lavas,” Earth and Planetary Science Letters, Vol. 132, No. 1-4, 1995, pp. 25-41.
[28] F. Lentini, “The Geology of Mt. Etna Bas,” Mem. Soc. Geol. It., Vol. 23, 1982, pp. 7G-25G.
[29] G. Chiodini, W. D’Alessandro and F. Parello, “1982. Geochemistry of Gases and Waters Discharged by the Mud Volcanoes at Paternò, Mt. Etna (Italy),” Bulletin of Volcanology, Vol. 58, No. 1, 1996, pp. 51-58.
[30] W. D’Alessandro, F. Parello and M. Valenza, “Gas Manifestations of Mount Etna Area: Historical Notices and New Geochemical Data (1990-1993),” Acta Vulcanologia, Vol. 8, No. 1, 1996, pp. 23-29.
[31] O. Silvestri, “Le Salse e la Eruzione di Fango di Paternò (Sicilia),” Osservazioni e Ricerche. Stabilimento Tipografico, C. Galatola, Catania, 1866, p. 30.
[32] O. Silvestri, “Importante Eruzione di Fango Comparsa a Paternò Nelle Adiacenze Dell’Etna ai Primi di Dicembre 1878,” Bollettino di Vulcanologia Italiana, Vol. 5, 1878, pp. 131-132.
[33] L. Spampinato, C. Oppenheimer, A. Cannata, P. Montalto, G. G. Salerno and S. Calvari, “On the Time-Scale of Thermal Cycles Associated with Open-Vent Degassing,” Bulletin of Volcanology, Vol. 74, No. 6, 2012, pp. 1281-1292.
[34] S. Amici, M. Turci. F. Giulietti, S. Giammanco, M. F. Buongiorno, A. La Spina and L. Spampinato, “Volcanic Environments Monitoring by Drones Mud Volcano Case Study,” International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. XL-1/W2, UAV-G, 4-6-2013, Rostock, 2013, p. 1.

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.