Optimization of Photo-Hydrogen Production by Immobilized Rhodopseudomonas Faecalis RLD-53

.
DOI: 10.4236/nr.2011.21001   PDF   HTML     5,300 Downloads   11,851 Views   Citations

Abstract

In this work, the optimization of hydrogen production by photo-fermentation bacteria immobilized on agar gel granule was systematic investigated in batch culture. Experiment focus on the effect of some important affecting factors on photo-hydrogen production. Results indicated that immobilized Rhodopseudomonas faecalis RLD-53 exhibited the highest hydrogen yield of 3.15 mol H2/mol acetate under follow optimal condition: agar granule diameter of 2.5 mm, inoculum age of 24 h, agar concentration of 2%, biomass of 4 mg/ml in agar and light intensity of 9000 lux. More importantly, immobilized photo-fermentation bacteria not only can enhance hydrogen production but can increase acids-tolerance capacity, even at pH 5.0 hydrogen also was produced, and thus hopefully immobilized photo-fermentation bacteria can be applied in the combination of dark and photo-fermentation for hydrogen production with high yield.

Share and Cite:

B. Liu, G. Xie, W. Guo, J. Ding and N. Ren, "Optimization of Photo-Hydrogen Production by Immobilized Rhodopseudomonas Faecalis RLD-53," Natural Resources, Vol. 2 No. 1, 2011, pp. 1-7. doi: 10.4236/nr.2011.21001.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] P. C. Hallenbeck, “Fermentative Hydrogen Production: Principles, Progress and Prognosis,” International Journal of Hydrogen Energy, Vol. 34, No. 17, 2009, pp. 7379-7389. doi:10.1016/j.ijhydene.2008.12.080
[2] E. Ozgür, A. E. Mars, B. Peksel, A. Louwerse, M. Yücel, U. Gündüz, P. A. M. Claassen and I. Eroglu, “Biohydrogen Production from Beet Molasses by Sequential Dark and Photo-Fermentation,” International Journal of Hydrogen Energy, Vol. 35, No. 2, 2010, pp. 511-517. doi:10.1016/j.ijhydene.2009.10.094
[3] B. F. Liu, N. Q. Ren, D. F. Xing, J. Ding, G. X. Zheng, W. Q. Guo, J. F. Xu and G. J. Xie, “Hydrogen Production by Immobilized R. faecalis RLD-53 Using Soluble Metabolites from Ethanol Fermentation Bacteria E. Harbinense B49,” Bioresource Technology, Vol. 100, No. 10, 2009, pp. 2719-2723. doi:10.1016/j.biortech.2008.12.020PMid:19200719
[4] B. F. Liu, N. Q. Ren, G. J. Xie, J. Ding, W. Q. Guo and D. F. Xing, “Enhanced Bio-Hydrogen Production by the Combination of Dark and Photo Fermentation in Batch Culture,” Bioresource Technology, Vol. 101, No. 14, 2010, pp. 5325-5329. doi:10.1016/j.biortech.2010.02.024
[5] S. Ozmihci and F. Kargi, “Bio-Hydrogen Production by Photo-Fermentation of Park Fermentation Effluent with Intermittent Feeding and Effluent Removal,” International Journal of Hydrogen Energy, Vol. 35, No. 13, 2010, pp. 6674-6680. doi:10.1016/j.ijhydene.2010.04.090
[6] H. Argun and F. Kargi, “Effects of Light Source, Intensity and Lighting Regime on Bio-Hydrogen Production from Ground Wheat Starch by Combined Dark and Photo-Fermentations,” International Journal of Hydrogen Energy, Vol. 35, No. 4, 2010, pp. 1604-1612. doi:10.1016/j.ijhydene.2009.12.033
[7] Y. C. Lo, C. Y. Chen, C. M. Lee and J. S. Chang, “Sequential Dark-Photo Fermentation and Autotrophic Microalgal Growth for High-Yield and CO2-free BioHydrogen Production,” International Journal of Hydrogen Energy, Vol. 35, No. 20, 2010, pp.10944-10953. doi:10.1016/j.ijhydene.2010.07.090
[8] B. Uyar, I. Eroglu, M. Yücel and U. Gündüz, “Photo Fermentative Hydrogen Production from Volatile Fatty Acids Present in Dark Fermentation Effluents,” Int J Hydrogen Energy, Vol. 34, No. 10, 2009, pp. 4517-4523. doi:10.1016/j.ijhydene.2008.07.057
[9] S. K. S. Patel, H. J. Purohit and V. C. Kalia, “Dark Fermentative Hydrogen Production by Defined Mixed Microbial Cultures Immobilized on Ligno-Cellulosic Waste Materials,” International Journal of Hydrogen Energy, Vol. 35, No. 19, 2010, pp. 10674-10681. doi:10.1016/j.ijhydene.2010.03.025
[10] J. H. Jo, D. S. Lee, D. Park and J. M. Park, “Biological Hydrogen Production by Immobilized Cells of Clostridium Tyrobutyricum JM1 Isolated from a Food Waste Treatment Process,” Bioresource Technology, Vol. 35, No. 19, 2008, pp. 6666-6672. doi:10.1016/j.biortech.2007.11.067
[11] T. Matsunaga, I, Karube and S. Suzuki, “Some Observations on Immobilized Hydrogen-Producing Bacteria: Behavior of Hydrogen in Gel Membranes,” Biotechnology Bioengineering, Vol. 22, No. 12, 1980, pp. 2607-2615. doi:10.1002/bit.260221209
[12] J. O. Kim, Y. H. Kim, J. Y. Ryu, B. K. Song, I. H. Kim and S. H. Yeom, “Immobilization Methods for Continuous Hydrogen Gas Production Biofilm Formation Versus Granulation,” Process Biochemistry, Vol. 40, No. 3-4, 2005, pp. 1331-1337. doi:10.1016/j.procbio.2004.06.008
[13] H. Yokoi, T. Tokushige, J. Hirose, S. Hayashi and Y. Takasaki, “Hydrogen Production by Immobilized Cells of Aciduric Enterobacter Aerogenes Strain HO-39,” Journal of Fermentation and Bioengineering, Vol. 83, No. 5, 1997, pp. 481-484. doi:10.1016/S0922-338X(97)83006-1
[14] S. Sawayama, K. K. Rao and D. Hall, “Immobilization of Rhodobacter capsulatus on Cellulose Beads and Water Treatment Using a Photobioreactor,” Journal of Fermentation and Bioengineering, Vol. 86, No. 5, 1998, pp. 517-520. doi:10.1016/S0922-338X(98)80164-5
[15] X. Tian, Q. Liao, W. Liu, Y. Z. Wang, X. Zhu, J. Li and H. Wang, “Photo-Hydrogen Production Rate of A PVA-Boric Acid Gel Granule Containing Immobilized Photosynthetic Bacteria Cells,” International Journal of Hydrogen Energy, Vol. 34, No. 11, 2009, pp. 4708-4717. doi:10.1016/j.ijhydene.2009.03.042
[16] N. Q. Ren, B. F. Liu, J. Ding and G. J. Xie, “Hydrogen Production with R. faecalis RLD-53 Isolated from Freshwater Pond Sludge,” Bioresource Technology, Vol. 100, No. 1, 2009, pp. 484-487. doi:10.1016/j.biortech.2008.05.009
[17] B. F. Liu, N. Q. Ren, J. Ding, G. J. Xie and W. Q. Guo, “The Effect of Ni2+, Fe2+ and Mg2+ Concentration on Photo-Hydrogen Production by Rhodopseudomonas faecalis RLD-53,” International Journal of Hydrogen Energy, Vol. 34, No. 2, 2009, pp. 721-726. doi:10.1016/j.ijhydene.2008.11.033
[18] P. Felten, H. Zürrer and R. Bachofen, “Production of Molecular Hydrogen with Immobilized Cells of Rhodospirillum rubrum,” Applied Microbiology and Biotechnology, Vol. 23, No 1, 1985, pp. 15-20. doi:10.1007/BF02660112
[19] E. Seol, A. Manimaran, Y. Jang, S. Kim, Y. K. Oh and S. Park, “Sustained Hydrogen Production from Formate Using Immobilized Recombinant Escherichia coli SH5,” International Journal of Hydrogen Energy(in Presss). doi:10.1016/j.ijhydene.2010.05.118
[20] R. Merugu, S. Girisham and S. M. Reddy, “Bioproduction of Hydrogen by Rhodobacter capsulatus KU002 Isolated from Leather Industry Effluents,” International Journal of Hydrogen Energy, Vol. 35, No. 18, 2010, pp. 9591-9597. doi:10.1016/j.ijhydene.2010.06.057
[21] H. Argun and F. Kargi, “Effects of Light Source, Intensity and Lighting Regime on Bio-hydrogen Production from Ground Wheat Starch by Combined Dark and Photo-Fermentations,” International Journal of Hydrogen Energy, Vol. 35, No. 4, 2010, pp. 1604-1612. doi:10.1016/j.ijhydene.2009.12.033

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.