Temperature Trends on Gran Canaria (Canary Islands). An Example of Global Warming over the Subtropical Northeastern Atlantic

Abstract

The variation in temperature on the island of Gran Canaria is studied using the method applied to the nearby island of Tenerife [1]. An upward warming trend of 0.09°C ± 0.05°C (α = 0.01) was seen from 1946 to date, which has accelerated since the seventies to 0.17°C ± 0.10°C (α = 0.01). The increase was higher at night (0.11°C ± 0.05°C) than by day (0.08°C ± 0.06°C), so the temperature range decreased slightly. These values are similar to those of Tenerife and the time series of anomalies for the two islands are highly correlated. On the coast the same relationship to the sea surface temperature was found as in Tenerife, but in the mid-altitude areas to windward, some differences were detected that are hypothetically attributable to the different relief of the two islands.

Share and Cite:

A. Luque, J. Martín, P. Dorta and P. Mayer, "Temperature Trends on Gran Canaria (Canary Islands). An Example of Global Warming over the Subtropical Northeastern Atlantic," Atmospheric and Climate Sciences, Vol. 4 No. 1, 2014, pp. 20-28. doi: 10.4236/acs.2014.41003.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] J. L. Martín, J. Bethencourt and E. Cuevas-Agulló, “Assessment of Global Warming on the Island of Tenerife, Canary Islands (Spain). Trends in Minimum, Maximum and Mean Temperatures since 1944,” Climatic Change, Vol. 114, No. 2, 2012, pp. 343-355. http://dx.doi.org/10.1007/s10584-012-0407-7
[2] E. Sanroma, E. Palle and A. Sánchez-Lorenzo, “Long-Term Changes in Insolation and Temperatures at Different Altitudes,” Environmental Research Letters, Vol. 5, No. 2, 2010, pp. 1-6.
http://dx.doi.org/10.1088/1748-9326/5/2/024006
[3] F. D. Santos, M. A. Valente, E. B. Azevedo, A. R. Tomé and F. Coelho, “Climate Change Scenarios in the Azores and Madeira Islands,” World Resource Review, Vol. 16, No. 4, 2004, pp. 473-491.
[4] F. Santos, M. de Castro, M. Gómez-Gesteira and I. Alvarez, “Differential in Coastal and Oceanic SST Warming Rates along the Canary Upwelling Ecosystems from 1982 to 2010,” Continental Shelf Research, Vol. 47, 2012, pp. 1-6. http://dx.doi.org/10.1016/j.csr.2012.07.023
[5] T. E. Cropper and E. Hanna, “An Analysis of the Climate of Macaronesia, 1865-2012,” International Journal of Climatology, 2013. http://onlinelibrary.wiley.com/doi/10.1002/joc.3710/pdf
http://dx.doi.org/10.1002/joc.3710
[6] J. J. Onate and A. Pou, “Temperature Variations in Spain since 1901: A Preliminary Analysis,” International Journal of Climatology, Vol. 16, No. 7, 1996, pp. 805-815.
http://dx.doi.org/10.1002/(SICI)1097-0088(199607)16:7<805::AID-JOC48>3.0.CO;2-Z
[7] E. Andrews, J. A. Ogren, P. Bonasoni, P. Marinoni, E. Cuevas, S. Rodríguez, J. Y. Sun, D. A. Jaffe, E. V. Fischer, U. Baltenperger, E. Weingartner, M. Collaud, M. Coen, S. Sharma, A. M. Macdonald, W. R. Leaitch, N. H. Lin, T. Arsov, I. Kalapov, A. Jefferson and P. Sheridan, “Climatology of Aerosol Radiative Properties in the Free Troposphere,” Atmospheric Research, Vol. 102, No. 4, 2011, pp. 365-393. http://dx.doi.org/10.1016/j.atmosres.2011.08.017
[8] C. Deser, A. S. Phillips and M. A. Alexander, “Twentieth Century Tropical Sea Surface Temperature Trends Revisited,” Geophysical Research Letters, Vol. 37, No. 10, 2010. http://dx.doi.org/10. 1029/2010GL043321
[9] S. Alonso-Pérez, E. Cuevas, C. Pérez, X. Querol, J. M. Baldasano, R. Draxler and J. J. de Bustos, “Trend Changes of African Airmass Intrusions in the Marine Boundary Layer over the Subtropical Eastern North Atlantic Region in Winter,” Tellus B, Vol. 63, No. 2, 2011, pp. 255-265.
http://dx.doi.org/10.1111/j.1600-0889.2010.00524.x
[10] K. Nakamae and M. Shiotani, “Interannual Variability in Saharan Dust over the North Atlantic Ocean and Its Relation to Meteorological Fields during Northern Winter,” Atmospheric Research, Vol. 120, 2013, pp. 336-346 http://dx.doi.org/10.1016/j.atmosres.2012.09.012
[11] I. Font, “El Tiempo Atmosférico en las Islas Canarias,” Servicio Meteorológico Nacional, Serie A (Memoria No. 26), Madrid, 1956.
[12] M. V. Marzol, “El Clima,” In: J. M. Fernández-Palacios and J. L. Martín-Esquivel, Eds., Naturaleza de las Islas Canarias. Ecología y Conservación, Publicaciones Turquesa, Santa Cruz de Tenerife, 2001, pp. 87-93.
[13] M. V. Marzol, “Temporal Characteristics and Fog Water Collection during Summer in Tenerife (Canary Islands, Spain),” Atmospheric Research, Vol. 87, No. 3-4, 2008, pp. 352-361. http://dx.doi.org/10. 1016/j.atmosres.2007.11.019
[14] P. Dorta, “Las Inversiones Térmicas en Canarias,” Investigaciones Geográficas, Vol. 15, 1996, pp. 109-124.
[15] H. Alexandersson and A. Moberg, “Homogenization of Swedish Temperature Data. Part I: Homogeneity Test for Linear Trends,” International Journal of Climatology, Vol. 17, No. 1, 1997, pp. 25-34. http://dx.doi.org/10.1002/(SICI)1097-0088(199701)17:1<25::AID-JOC103>3.0.CO;2-J
[16] H. A. Alexandersson, “A Homogeneity Test Applied to Precipitation Data,” International Journal of Climatology, Vol. 6, No. 6, 1986, pp. 661-675. http://dx.doi.org/10.1002/joc.3370060607
[17] A. N. Pettitt, “A Nonparametric Approach to the Change-Point Problem,” Applied Statistics, Vol. 28, No. 2, 1979 pp. 126-135. http://dx.doi.org/10.2307/2346729
[18] R. Sneyers, “Sobre el Análisis Estadístico de las Series de Observaciones,” OMM, Nota Técnica 143, OMM-N? 415, Geneva, 1975.
[19] T. K. Osborn, K. R. Briffa and P. D. Jones, “Adjusting Variance for Sample-Size in Tree-Ring Chronologies and Other Regional Mean Time Series,” Dendrochronol, Vol. 15, 1997, pp. 89-99.
[20] B. D. Santer, T. M. L. Wigley, J. S. Boyle, D. J. Gaffen, J. J. Hnilo, D. Nychka, D. E. Parker and K. E. Taylor, “Statistical Significance of Trends and Trend Differences in Layer-Average Atmospheric Temperature Time Series,” Journal of Geophysical Research, Vol. 105, No. D6, 2000, pp. 7337-7356. http://dx.doi.org/10.1029/1999JD901105
[21] E. Kalnay, M. Kanamitsu, R. Kistler, W. Collins, D. Deaven, L. Gandin, M. Iredell, S. Saha, G. White, J. Woollen, Y. Zhu, A. Leetmaa and R. Reynolds, “The NCEP/ NCAR 40-Year Reanalysis Project,” Bulletin of American Meteorology Society, Vol. 77, No. 3, 1996, pp. 437-471. http://dx.doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
[22] J. Hansen, R. Ruedy, J. Glascoe and M. Sato, “GISS Analysis of Surface Temperature Change,” Journal of Geophysical Research, Vol. 104, No. D24, 1999, pp. 30997-31022. http://dx.doi.org/10.1029/ 1999JD900835
[23] P. Jones, T. Wigley and P. Kelly, “Variations in Surface Air Temperatures: Part 1. Northern Hemisphere, 1881-1980,” Monthly Weather Review, Vol. 110, No. 2, 1982, pp. 59-70.
http://dx.doi.org/10.1175/1520-0493(1982)110<0059:VISATP>2.0.CO;2
[24] D. R. Easterling, B. Horton, P. D. Jones, T. C. Peterson, T. R. Karl, D. E. Parker, M. J. Salinger, V. Razuvayev, N. Plummer, P. Jamason and C. K. Folland, “A New Look at Maximum and Minimum Temperature Trends for the Globe,” Science, Vol. 277, No. 5324, 1997, pp. 364-367.
http://dx.doi.org/10.1126/science.277.5324.364
[25] B. G. Liepert, “Observed Reductions of Surface Solar Radiation at Sites in the United States and Worldwide from 1961 to 1990,” Geophysical Research Letters, Vol. 29, No. 10, 2002, pp. 61-1-61-4. http://dx.doi.org/10.1029/2002GL014910
[26] S. J. Smith, J. van Aardenne, Z. Klimont, R. J. Andres, A. Volke and S. Delgado, “Anthropogenic Sulfur Dioxide Emissions: 1850-2005,” Atmospheric Chemistry and Physics, Vol. 11, 2011, pp. 1101-1116. http://dx.doi.org/10.5194/acp-11-1101-2011
[27] M. Wild, H. Gilgen, A. Roesch, A. Ohmura, C. N. Long, E. G. Dutton, B. Forgan, A. Kallis, V. Russak and A. Tsvetkov, “From Dimming to Brightening: Decadal Changes in Solar Radiation at Earth’s Surface,” Science, Vol. 308, No. 5723, 2005, pp. 847-850. http://dx.doi.org/10.1126/science.1103215
[28] M. Wild, “Global Dimming and Brightening: A Review,” Journal of Geophysical Research: Atmospheres, Vol. 114 No. D10, 2009. http://dx.doi.org/10.1029/2008JD011470
[29] J. R. Magnus, B. Melenberg and C. Muris, “Global Warming and Local Dimming: The Statistical Evidence,” Journal of the American Statistical Association, Vol. 106, No. 494, 2011, pp. 452-468. http://dx.doi.org/10.1198/jasa.2011.ap09508
[30] M. P. McCormick, L. W. Thomason and C. R. Trepte, “Atmospheric Effects of the Pinatubo Eruption,” Nature, Vol. 373, 1995, pp. 399-404. http://dx.doi.org/10.1038/373399a0
[31] C. Price, S. Michaelides, S. Pashiardis and P. Alpert, “Long Term Changes in Diurnal Temperature Range in Cyprus,” Atmospheric Research, Vol. 51, No. 2, 1999 pp. 85-98.
http://dx.doi.org/10.1016/S0169-8095(99)00022-8
[32] M. V. Marzol, “Fog Water Collection in a Rural Park in the Canary Islands (Spain),” Atmospheric Research, Vol. 64, No. 1-4, 2002, pp. 239-250. http://dx.doi.org/10.1016/S0169-8095(02)00095-9
[33] P. Cereceda, P. Osses, H. Larraín, M. Farías, M. Lagos, R. Pinto and R. Schemenauer, “Advective, Orographic and Radiation Fog in the Tarapacá Region, Chile,” Atmospheric Research, Vol. 64, No. 1-4, 2002, pp. 262-271. http://dx.doi.org/10.1016/S0169-8095(02)00097-2
[34] L. Jin-Jia, S. K. Behera, Y. Masumoto and T. Yamagata, “Impact of Global Ocean Surface Warming on Seasonal-to-Interannual Climate Prediction,” Journal of Climate, Vol. 24, 2011, pp. 1626-1646. http://dx.doi.org/10.1175/2010JCLI3645.1
[35] F. González Taboada and R. Anadón, “Patterns of Change in Sea Surface Temperature in the North Atlantic during the Last Three Decades: Beyond Mean Trends,” Climatic Change, Vol. 115, No. 2, 2012, pp. 419-431. http://dx.doi.org/10.1007/s10584-012-0485-6

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.