A New Generation of Drugs: Synthetic Peptides Based on Natural Regulatory Peptides

Abstract

Natural regulatory peptides are biologically active compounds that are produced by various cells and provide a link among the main regulatory systems of the body. The field of research into the biologic activity of endogenous regulatory peptides is extremely vast. These peptides affect the cardiovascular, immune, reproductive, endocrine, digestive, and other systems, alter energy metabolism, and are especially effective in the regulation of the central nervous system. Despite of the wide range of preventive and therapeutic effects of natural regulatory peptides and proteins, their application in clinical practice is difficult. This is primarily because of their extreme instability, as they are rapidly degraded by proteases of the gastrointestinal tract, blood, cerebrospinal fluid, and other biologic media. Compounds with higher stability (i.e., a considerably longer half-life compared with that of natural molecules) and the ability to provide a directional effect on the various body systems were obtained from modifications of endogenous regulatory peptides. Synthetic analogs of regulatory peptides, as a rule, contain only natural amino acids in their composition, and their biodegradation does not lead to the formation of toxic products; thus, they have fewer side effects. This review focuses on the consideration of two synthetic regulatory peptides, Semax and Selank, which were the bases for the creation of new drugs that are used effectively in the treatment of various diseases of the nervous system. The synthetic analog of an adrenocorticotropic hormone 4-10 fragment (ACTH4-10) Semax is a powerful neuroprotective agent that is particularly effective as a therapy for stroke. Selank was synthesized on the basis of the natural immunomodulator tuftsin. Selank is a powerful anxiolytic that is used as a therapy for generalized anxiety disorder and neurasthenia without sedative and muscle-relaxant effects. This review presents the results of research aimed at studying the influence of these peptides on the transcriptome of brain cells. The problems of drugs developed based on the clinical activities of Semax and Selank are discussed separately.

Share and Cite:

T. Kolomin, M. Shadrina, P. Slominsky, S. Limborska and N. Myasoedov, "A New Generation of Drugs: Synthetic Peptides Based on Natural Regulatory Peptides," Neuroscience and Medicine, Vol. 4 No. 4, 2013, pp. 223-252. doi: 10.4236/nm.2013.44035.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] [1] D. de Wied, “Neuropeptides and Behavior,” Nederlands Tijdschrift voor Geneeskunde, Vol. 118, No. 49, 1974, pp. 1865-1869.
[2] J. M. Polak, “Regulatory Peptide,” Birkhä user, Basel, 1988.
[3] I. P. Ashmarin and M. F. Obukhova, “Regulatory Peptides. A functional Continuum,” Biokhimiya, Vol. 51, No. 4, 1986, pp. 531-545.
[4] I. P. Ashmarin and M. F. Obukhova, “Current State of the Hypothesis on Functional Continuum of Regulatory Peptides,” Vestnik Rossiiskoi Akademii Meditsinskikh Nauk, Vol. 10, 1994, pp. 28-34.
[5] I. P. Ashmarin and S. V. Koroleva, “Rules of Interactions and Functional Continuum of Neuropeptides (On the Way to the Common Conception),” Vestnik Rossiiskoi Akademii Meditsinskikh Nauk, Vol. 6, 2002, pp. 40-48.
[6] S. V. Koroleva and I. P. Ashmarin, “A Functional Continuum of Regulatory Anxiety-Enhancing Peptides. The Search for Complexes Providing the Optimal Basis for Developing Inhibitory Therapeutic Agents,” Neuroscience and Behavioral Physiology, Vol. 36, No. 2, 2006, pp. 157-162. http://dx.doi.org/10.1007/s11055-005-0174-2
[7] O. A. Gomazkov, “Physiologically Active Peptides: A Reference Guide,” Institut Pendidikan Guru Malaysia, Cyberjaya, 1995.
[8] I. P. Ashmarin and P. V. Stukalov, “Neurochemistry,” Institute of Biomedical Chemistry, Russian Academy of Medical Sciences, Moscow, 1996.
[9] I. P. Ashmarin and E. P. Karazeeva, “Neuropeptides,” In: I. P. Ashmarin, Ed., Biochemestry of the Brain, Saint Petersburg State University, Saint Petersburg, 1999, pp. 232-266.
[10] I. P. Ashmarin, V. N. Nezavibatko, N. G. Levitskaia, V. B. Koshelev and A. A. Kamenskii, “Design and Investigation of an ACTH (4-10) Analogue Lacking D-Amino Acids and Hydrophobic Radicals,” Neuroscience Research Communications, Vol. 16, No. 2, 1995, pp. 105-112.
[11] I. P. Asmarin, V. N. Nezavibat’ko, N. F. Miasoedov, A. A. Kamenskii, I. A. Grivennikov, M. A. Ponomareva-Stepnaia, L. A. Andreeva, A. Ya Kaplan, V. B. Koshelev and T. V. Riasina, “A Nootropic Adrenocorticotropin Analog 4-10-Semax (15 Years Experience in Its Design and Study),” Zhurnal Vysshei Nervnoi Deiatelnosti Imeni ip Pavlova, Vol. 47, No. 2, 1997, pp. 420-430.
[12] I. P. Ashmarin, E. P. Karazeeva, L. A. Lyapina and G. E. Samonina, “The Simplest Proline-Containing Peptides PG, GP, PGP, and GPGG: Regulatory Activity and Possible Sources of Biosynthesis,” Biochemistry, Vol. 63, No. 2, 1998, pp. 119-124.
[13] I. P. Ashmarin, “Glyprolines in Regulatory Tripeptides,” Neurochemical Journal, Vol. 1, No. 3, 2007, pp. 173-175. http://dx.doi.org/10.1134/S1819712407030014
[14] A. N. Eberle, “Structure and Chemistry of the Peptide Hormones of the Intermediate Lobe,” Ciba Foundation Symposium, Vol. 81, 1981, pp. 13-31.
http://dx.doi.org/10.1002/9780470720646.ch3
[15] R. E. Mains, B. A. Eipper and N. Ling, “Common Precursor to Corticotropins and Endorphins,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 74, No. 7, 1977, pp. 3014-3018.
http://dx.doi.org/10.1073/pnas.74.7.3014
[16] V. A. Tkachuk, “Introduction to Molecular Endocrinology,” Moscow State University, Moscow, 1983.
[17] I. A. Mirsky, R. Miller and M. Stein, “Relation of Adrenocortical Activity and Adaptive Behavior,” Psychosomatic Medicine, Vol. 15, No. 6, 1953, pp. 574-588.
[18] J. V. Murphy and R. E. Miller, “The Effect of Adrenocorticotrophic Hormone (ACTH) on Avoidance Conditioning in the Rat,” Journal of Comparative & Physiological Psychology, Vol. 48, No. 1, 1955, pp. 47-49.
http://dx.doi.org/10.1037/h0043004
[19] D. de Wied, “Inhibitory Effect of ACTH and Related Peptides on Extinction of Conditioned Avoidance Behavior in Rats,” Proceedings of the Society for Experimental Biology and Medicine, Vol. 122, No. 1, 1966, pp. 28-32. http://dx.doi.org/10.3181/00379727-122-31042
[20] B. Bohus and E. Endroeczi, “The Influence of Pituitary-Adrenocortical Function on the Avoiding Conditioned Reflex Activity in Rats,” Acta Physiologica Academiae Scientiarum Hungaricae, Vol. 26, 1965, pp. 183-189.
[21] B. Bohus and E. Endroeczi, “Regulation of Adrenocortical Steroid Synthesis and Adrenal Tissue Proliferation,” Acta Physiologica Academiae Scientiarum Hungaricae, Vol. 28, No. 2, 1965, pp. 125-131.
[22] I. P. Ashmarin, A. A. Kamenskii and S. L. Shelekhov, “Effect of a Fragment of Adrenocorticotropic Hormone (ACTH4-10) on Learning in White Rats Given Positive Reinforcement,” Doklady Akademii Nauk SSSR, Vol. 240, No. 5, 1978, pp. 1245-1247.
[23] R. F. McGivern, G. Rose, C. Berka, A. N. Clancy, C. A. Sandman and B. E. Beckwith, “Neonatal Exposure to a High Level of ACTH4-10 Impairs Adult Learning Performance,” Pharmacology Biochemistry and Behavior, Vol. 27, No. 1, 1987, pp. 133-142.
http://dx.doi.org/10.1016/0091-3057(87)90487-4
[24] R. N. Glebov and T. V. Goriacheva, “ACTH as a Neuropeptide. The Functional Role of ACTH in the Brain,” Patologicheskaia Fiziologiia I èksperimental’Naia Terapiia, Vol. 4, 1990, pp. 54-57.
[25] L. V. Antonova and A. A. Kamensky, “Pharmacological Activity of ACTH Fragments,” In: A. V. Valdman, Ed., Pharmacology of the Neuropeptide, St. Petersburg, 1982. pp. 125-147.
[26] T. B. van Wimersma Greidanus and D. de Wied, “Effects of Systemic and Intracerebral Administration of Two Opposite Acting ACTH-Related Peptides on Extinction of Conditioned Avoidance Behavior,” Neuroendocrinology, Vol. 7, No. 5-6, 1971, pp. 291-301.
http://dx.doi.org/10.1159/000121977
[27] V. M. Vinogradov, V. I. Medvedev, A. T. Grechko, V. D. Bakharev and M. A. Ponomareva-Stepnaia, “Effect of Neuropeptide Fragments of Adrenocorticotropic Hormone and Vasopressin on the Behavioral Activity of Rats,” Fiziologicheskii Zhurnal SSSR Imeni I. M. Sechenova, Vol. 66, No. 3, 1980, pp. 409-415.
[28] I. P. Ashmarin, “Strong- and Rapid-Action Regulator Peptides,” Patologicheskaia Fiziologiia i èksperimental’Naia Terapiia, Vol. 3, 1988, pp. 3-8.
[29] E. L. Zager and P. M. Black, “Neuropeptides in Human Memory and Learning Processes,” Neurosurgery, Vol. 17, No. 2, 1985, pp. 355-369.
http://dx.doi.org/10.1227/00006123-198508000-00023
[30] M. Maurelli, E. Marchioni, F. Savoldi and A. Tartara, “Electroencephalographic, Behavioral and Autonomic Effects of Various ACTH Fragments in Rabbits,” Farmaco (Edizione Scientifica), Vol. 42, No. 1, 1987, pp. 33-41.
[31] G. L. Kovacs and D. de Wied, “Peptidergic Modulation of Learning and Memory Processes,” Pharmacological Reviews, Vol. 46, No. 3, 1994, pp. 269-291.
[32] J. F. Lois, H. J. Fischer, J. M. Mirra and A. S. Gomes, “Angiography of Histopathologic Variants of Synovial Sarcoma,” Acta Radiologica: Diagnosis, Vol. 27, No. 4, 1986, pp. 449-454.
[33] E. C. Azmitia and E. R. de Kloet, “ACTH Neuropeptide Stimulation of Serotonergic Neuronal Maturation in Tissue Culture: Modulation by Hippocampal Cells,” Progress in Brain Research, Vol. 72, 1987, pp. 311-318.
http://dx.doi.org/10.1016/S0079-6123(08)60217-4
[34] C. Richter-Landsberg and B. Jastorff, “The Role of cAMP in Nerve Growth Factor-Promoted Neurite Outgrowth in PC12 cells,” Journal of Cell Biology, Vol. 102, No. 3, 1986, pp. 821-829.
http://dx.doi.org/10.1083/jcb.102.3.821
[35] F. L. Strand and T. T. Kung, “ACTH Accelerates Recovery of Neuromuscular Function Following Crushing of Peripheral Nerve,” Peptides, Vol. 1, No. 2, 1980, pp. 135-138. http://dx.doi.org/10.1016/0196-9781(80)90077-7
[36] W. H. Gispen and H. Zwiers, “Behavioral and Neurochemical Effects of ACTH,” In: W. H. Gispen, Ed., Neurochemistry, Springer-Verlag, New York, 1985, pp. 375-412. http://dx.doi.org/10.1007/978-1-4684-7018-5_17
[37] P. Girlanda, U. Muglia, G. Vita, R. Dattola, M. Santoro, A. Toscano, C. Venuto, M. L. Roberto, A. Baradello, M. Romano and C. Messina, “Effect of ACTH4-10 on Nerve Fiber Regeneration after Sciatic Nerve Crush in Rabbits: An Electrophysiological and Morphological Study,” Experimental Neurology, Vol. 99, No. 2, 1988, pp. 454-460. http://dx.doi.org/10.1016/0014-4886(88)90162-8
[38] E. M. Hol, W. H. Gispen and P. R. Bar, “ACTH-Related Peptides: Receptors and Signal Transduction Systems Involved in Their Neurotrophic and Neuroprotective Actions,” Peptides, Vol. 16. No. 5, 1995, pp. 979-993.
http://dx.doi.org/10.1016/0196-9781(95)00017-E
[39] R. Smolnik, B. Perras, M. Molle, H. L. Fehm and J. Born, “Event-Related Brain Potentials and Working Memory Function in Healthy Humans after Single-Dose and Prolonged Intranasal Administration of Adrenocorticotropin 4-10 and Desacetyl-Alpha-Melanocyte Stimulating Hormone,” Journal of Clinical Psychopharmacology, Vol. 20, No. 4, 2000, pp. 445-454.
http://dx.doi.org/10.1097/00004714-200008000-00009
[40] H. M. Greven and D. de Wied, “The Influence of Peptides Derived from Corticotrophin (ACTH) on Performance. Structure Activity Studies,” Progress in Brain Research, Vol. 39, 1973, pp. 429-442.
http://dx.doi.org/10.1016/S0079-6123(08)64098-4
[41] M. Fekete and D. de Wied, “Potency and Duration of Action of the ACTH 4-9 Analog (ORG 2766) as Compared to ACTH 4-10 and [D-Phe7] ACTH 4-10 on Active and Passive Avoidance Behavior of Rats,” Pharmacology, Biochemistry and Behavior, Vol. 16, No. 3, 1982, pp. 387-392. http://dx.doi.org/10.1016/0091-3057(82)90439-7
[42] M. Fekete and D. de Wied, “Dose-Related Facilitation and Inhibition of Passive Avoidance Behavior by the ACTH 4-9 Analog (ORG 2766),” Pharmacology, Biochemistry and Behavior, Vol. 17, No. 2, 1982, pp. 177-182.
http://dx.doi.org/10.1016/0091-3057(82)90066-1
[43] M. Fekete, B. Bohus, L. van Wolfswinkel, J. M. van Ree and D. de Wied, “Comparative Effects of the ACTH 4-9 analogue (ORG 2766), ACTH 4-10 and [D-Phe7] ACTH 4-10 on Medial Septal Self-Stimulation Behaviour in Rats,” Neuropharmacology, Vol. 21, No. 9, 1982, pp. 909-916.
http://dx.doi.org/10.1016/0028-3908(82)90083-1
[44] P. de Koning, J. P. Neijt, F. G. Jennekens and W. H. Gispen, “Org.2766 Protects from Cisplatin-Induced Neurotoxicity in Rats,” Experimental Neurology, Vol. 97, No. 3, 1987, pp. 746-750.
http://dx.doi.org/10.1016/0014-4886(87)90132-4
[45] F. J. Hock, H. J. Gerhards, G. Wiemer, P. Usinger and R. Geiger, “Learning and Memory Processes of an ACTH4-9 Analog in Mice and Rats,” Peptides, Vol. 9, No. 3, 1988, pp. 575-581.
http://dx.doi.org/10.1016/0196-9781(88)90167-2
[46] K. R. Siegfried, “First Clinical Impressions with an ACTH Analog (HOE 427) in the Treatment of Alzheimer’s Disease,” Annals of the New York Academy of Sciences, Vol. 640, 1991, pp. 280-283.
[47] P. E. Vos, G. J. Bluemink, G. Wolterink and J. M. van Ree, “The ACTH-(4-9) Analogue ORG 2766 Facilitates Denervation Supersensitivity after a Unilateral 6-OHDA Lesion of the Corpus Striatum in Rats,” Neuropeptides, Vol. 19, No. 4, 1991, pp. 271-279.
http://dx.doi.org/10.1016/0143-4179(91)90094-Y
[48] G. Wolterink, J. M. van Ree, J. W. van Nispen and D. de Wied, “Structural Modifications of the ACTH-(4-9) Analog ORG 2766 Yields Peptides with High Biological Activity,” Life Sciences, Vol. 48, No. 2, 1991, pp. 155-161.
http://dx.doi.org/10.1016/0024-3205(91)90409-5
[49] M. J. Attella, S. W. Hoffman, M. P. Pilotte and D. G. Stein, “Effects of BIM-22015, an Analog of ACTH4-10, on Functional Recovery after Frontal Cortex Injury,” Behavioral and Neural Biology, Vol. 57, No. 2, 1992, pp. 157-166.
http://dx.doi.org/10.1016/0163-1047(92)90665-Q
[50] M. A. Ponomareva-Stepnaia, E. A. Porunkevich, A. A. Skuin'sh, V. N. Nezavibat’ko and I. P. Ashmarin, “Hormonal Activity of the ACTH(4-10) Analog—A Prolonged-Action Stimulant of Learning,” Bulletin of Experimental Biology and Medicine, Vol. 101, No. 3, 1986, pp. 267-268. http://dx.doi.org/10.1007/BF00835912
[51] E. R. Safarova, S. I. Shram, Y. A. Zolotarev and N. F. Myasoedov, “Effect of Semax Peptide on Survival of Cultured Rat Pheochromocytoma Cells during Oxidative Stress,” Bulletin of Experimental Biology and Medicine, Vol. 135, No. 3, 2003, pp. 268-271.
http://dx.doi.org/10.1023/A:1024141232307
[52] T. P. Storozhevykh, G. R. Tukhbatova, Y. E. Senilova, V. G. Pinelis, L. A. Andreeva and N. F. Myasoyedov, “Effects of Semax and Its Pro-Gly-Pro Fragment on Calcium Homeostasis of Neurons and Their Survival under Conditions of Glutamate Toxicity,” Bulletin of Experimental Biology and Medicine, Vol. 143, No. 5, 2007, pp. 601-604. http://dx.doi.org/10.1007/s10517-007-0192-x
[53] I. A. Grivennikov, O. V. Dolotov and Iu. I. Gol’dina, “Peptide Factors in Processes of Proliferation, Differentiation, and Extended Viability of Mammalian Nervous System Cells,” Molecular Biology, Vol. 33, No. 1, 1999, pp. 120-126.
[54] I. A. Grivennikov, O. V. Dolotov, Y. A. Zolotarev, L. A. Andreeva, N. F. Myasoedov, L. Leacher, I. B. Black and C. F. Dreyfus, “Effects of Behaviorally Active ACTH (4-10) Analogue—Semax on Rat Basal Forebrain Cholinergic Neurons,” Restorative Neurology and Neuroscience, Vol. 26, No. 1, 2008, pp. 35-43.
[55] A. Y. Kaplan, V. B. Koshelev, V. N. Nezavibatko and I. P. Ashmarin, “The Increase of Resistance to Hypoxia by Using Neuropeptide Drug Semax,” Human physiology, Vol. 18, No. 5, 1992, pp. 104-107.
[56] M. V. Maslova, Ia. V. Krushinskaia, A. S. Maklakova, P. V. Balan, Iu. B. Kuznetsov, N. A. Sokolova and I. P. Ashmarin, “Effect of Heptapeptide Semax on the Cardiac Activity in Acute Hypobaric Hypoxia during the Early Postnatal Period,” Bulletin of Experimental Biology and Medicine, Vol. 128, No. 2, 1999, pp. 797-799.
http://dx.doi.org/10.1007/BF02433818
[57] V. V. Iasnetsov and T. A. Voronina, “Antihypoxic and Antiamnesic Effects of Mexidol and Semax,” EksperiMental’Naia i Klinicheskaia Farmakologiia, Vol. 73, No. 4, 2010, pp. 2-7.
[58] V. V. Iasnetsov and T. A. Voronina, “Effect of Semax and Mexidol on Brain Ischemia Models in Rats,” Eksperimental’Naia i Klinicheskaia Farmakologiia, Vol. 72, No. 1, 2009, pp. 68-70.
[59] V. K. Khugaeva and V. V. Aleksandrin, “Relationship between the Therapeutic Effect of the Peptide Preparation Semax and the Severity of Brain Ischemia,” Bulletin of Experimental Biology and Medicine, Vol. 124, No. 1, 1997, pp. 655-658. http://dx.doi.org/10.1007/BF02445053
[60] O. E. Fadiukova, A. A. Alekseev, V. G. Bashkatova, I. A. Tolordava, V. S. Kuzenkov, V. D. Mikoian, A. F. Vanin, V. B. Koshelev and K. S. Raevskii, “Semax Prevents Elevation of Nitric Oxide Generation Caused by Incomplete Global Ischemia in the Rat Brain,” Eksperimental’Naia i Klinicheskaia Farmakologiia, Vol. 64, No. 2, 2001, pp. 31-34.
[61] V. G. Bashkatova, V. B. Koshelev, O. E. Fadyukova, A. A. Alexeev, A. F. Vanin, K. S. Rayevsky, I. P. Ashmarin and D. M. Armstrong, “Novel Synthetic Analogue of ACTH 4-10 (Semax) but not Glycine Prevents the Enhanced Nitric Oxide Generation in Cerebral Cortex of Rats with Incomplete Global Ischemia,” Brain Research, Vol. 894, No. 1, 2001, pp. 145-149.
http://dx.doi.org/10.1016/S0006-8993(00)03324-2
[62] G. A. Romanova, D. N. Silachev, F. M. Shakova, Y. N. Kvashennikova, I. V. Viktorov, S. I. Shram and N. F. Myasoedov, “Neuroprotective and Antiamnesic Effects of Semax during Experimental Ischemic Infarction of the Cerebral Cortex,” Bulletin Experimental Biology and Medicine, Vol. 142, No. 6, 2006, pp. 663-666.
http://dx.doi.org/10.1007/s10517-006-0445-0
[63] D. N. Silachev, S. I. Shram, F. M. Shakova, G. A. Romanova and N. F. Miasoedov, “Formation of the Spatial Memory in Rats with Ischemic Injury in Prefrontal Areas of the Cortex; Effects of a Sinthetic Analogue of ACTH(4-7),” Neuroscience and Behavioral Physiology, Vol. 39, No. 8, 2008, pp. 749-756.
http://dx.doi.org/10.1007/s11055-009-9197-4
[64] A. N. Gerenko, V. N. Nezavibatko, A. V. Volkov and A. A. Kamenskii, “Motor Activity of Rats in the Postresuscitation Period,” Moscow University Biological Sciences Bulletin, Vol. 3, 1991, pp. 24-30.
[65] F. I. Volkov, Y. V. Zarzhetsky, A. Y. Postnov, G. K. Bolyakina, A. A. Kamensky and O. B. Muraviov, “The Results of Regulatory Peptide Administration during Reanimation after Cardioplegia,” Terminal Condition and Resuscitation Pathology of the Body: Pathophysiology, Clinical Features, Prevention and Treatment, Scientific Research Institute of General Reanimatology RAMS, Moscow, 1992, pp. 69-76.
[66] G. V. Alekseeva, N. A. Bottaev and V. V. Goroshkova, “Use of Semax at a Follow-Up of Patients with Posthypoxic Encephalopathy,” Anesteziologiia I Reanimatologiia, Vol. 1, 1999, pp. 40-43.
[67] O. V. Dolotov, E. A. Karpenko, T. S. Seredenina, L. S. Inozemtseva, N. G. Levitskaya, Y. A. Zolotarev, A. A. Kamensky, I. A. Grivennikov, J. Engele and N. F. Myasoedov, “Semax, an Analogue of Adrenocorticotropin (4-10), Binds Specifically and Increases Levels of Brain-Derived Neurotrophic Factor Protein in Rat Basal Forebrain,” Journal of Neurochemistry, Vol. 97, No. 1, 2006, pp. 82-86.
http://dx.doi.org/10.1111/j.1471-4159.2006.03658.x
[68] T. V. V’yunova, K. V. Shevchenko, V. P. Shevchenko, M. Y. Bobrov, V. V. Bezuglov and N. F. Myasoedov, “Specific Binding of Semax in Different Regions of the Rat Brain,” Doklady Biological Sciences, Vol. 410, No. 1, 2006, pp. 376-377.
http://dx.doi.org/10.1134/S0012496606050085
[69] M. I. Shadrina, O. V. Dolotov, I. A. Grivennikov, P. A. Slominsky, L. A. Andreeva and L. S. Inozemtseva, “Rapid Induction of Neurotrophin mRNAs in Rat Glial Cell Cultures by Semax, an Adrenocorticotropic Hormone Analog,” Neuroscience Letters, Vol. 308, No. 2, 2001, pp. 115-108. http://dx.doi.org/10.1016/S0304-3940(01)01994-2
[70] O. V. Dolotov, T. S. Seredenina, N. G. Levitskaya, A. A. Kamensky, L. A. Andreeva, L. Y. Alfeeva, I. Y. Nagaev, Y. A. Zolotarev, I. A. Grivennikov, Y. Engele and N. F. Myasoedov, “The Heptapeptide SEMAX Stimulates BDNF Expression in Different Areas of the Rat Brain in Vivo,” Doklady Biological Sciences, Vol. 391, No. 1-6, 2003, pp. 292-295. http://dx.doi.org/10.1023/A:1025177812262
[71] O. V. Dolotov, E. A. Karpenko, L. S. Inozemtseva, T. S. Seredenina, N. G. Levitskaya, J. Rozyczka, E. V. Dubynina, E. V. Novosadova, L. A. Andreeva, L. Y. Alfeeva, A. A. Kamensky, I. A. Grivennikov, N. F. Myasoedov and J. Engele, “Semax, an Analog of ACTH(4-10) with Cognitive Effects, Regulates BDNF and trkB Expression in the Rat Hippocampus,” Brain Research, Vol. 1117, No. 1, 2006, pp. 54-60.
http://dx.doi.org/10.1016/j.brainres.2006.07.108
[72] T. Y. Agapova, Y. V. Agniullin, M. I. Shadrina, S. I. Shram, P. A. Slominsky, S. A. Lymborska and N. F. Myasoedov, “Neurotrophin Gene Expression in Rat Brain under the Action of Semax, an Analogue of ACTH 4-10,” Neuroscience Letters, Vol. 417, No. 2, 2007, pp. 201-205. http://dx.doi.org/10.1016/j.neulet.2007.02.042
[73] V. V. Stavchansky, V. V. Yuzhakov, A. Y. Botsina, V. I. Skvortsova, L. N. Bondurko, M. G. Tsyganova, S. A. Limborska, N. F. Myasoedov and L. V. Dergunova, “The Effect of Semax and Its C-End Peptide PGP on the Morphology and Proliferative Activity of Rat Brain Cells during Experimental Ischemia: A Pilot Study,” Journal of Molecular Neuroscience, Vol. 45, No. 2, 2011, pp. 177-185. http://dx.doi.org/10.1007/s12031-010-9421-2
[74] D. M. Manchenko, N. Glazova, N. G. Levitskaia, L. A. Andreeva, A. A. Kamenskii and N. F. Miasoedov, “Nootropic and Analgesic Effects of Semax Following Different Routes of Administration,” Rossiiskii Fiziologicheskii Zhurnal Imeni I.M. Sechenova, Vol. 96, No. 10, 2010, pp. 1014-1023.
[75] V. N. Potaman, L. Y. Alfeeva, A. A. Kamensky, N. G. Levitzkaya and V. N. Nezavibatko, “N-terminal Degradation of ACTH(4-10) and Its Synthetic Analog Semax by the Rat Blood Enzymes,” Biochemical Biophysical Research Communications, Vol. 176, No. 2, 1991, pp. 741-746. http://dx.doi.org/10.1016/S0006-291X(05)80247-5
[76] V. N. Potaman, L. Y. Alfeeva, A. A. Kamensky and V. N. Nezavibatko, “Degradation of ACTH/MSH(4-10) and Its Synthetic Analog Semax by Rat Serum Enzymes: An Inhibitor Study,” Peptides, Vol. 14, No. 3, 1993, pp. 491-495. http://dx.doi.org/10.1016/0196-9781(93)90137-6
[77] E. A. Sebentsova, A. V. Denisenko, N. G. Levitskaia, L. A. Andreeva, A. A. Kamenskii and N. F. Miasoedov, “Long-Lasting Behavioral Effects of Chronic Neonatal Treatment with ACTH (4-10) Analogue Semax in White Rat Pups,” Zhurnal Vysshei Nervnoi Deiatelnosti Imeni ip Pavlova, Vol. 55, No. 2, 2005, pp. 213-220.
[78] E. A. Sebentsova, N. Glazova, N. G. Levitskaia, L. A. Andreeva, L. Alfeeva, A. A. Kamenskii and N. F. Miasoedov, “Dependence of Long-Lasting Effects of the ACTH(4-10) Analogue Semax on the Time of Its Neonatal Administration,” Rossiiskii Fiziologicheskii Zhurnal Imeni I.M. Sechenova, Vol. 91, No. 2, 2005, pp. 122-131.
[79] A. Y. A. Kaplan, A. G. Kochetova, V. N. Nezavibatko, T. V. Rjasina and I. P. Ashmarin, “Synthetic ACTH Analogue Semax Displays Nootropic-Like Activity in Human,” Neuroscience Research Communications, Vol. 19, No. 2, 1996, pp. 115-123.
http://dx.doi.org/10.1002/(SICI)1520-6769(199609)19:2<115::AID-NRC171>3.0.CO;2-B
[80] P. E. Umryukhin, K. V. Anokhin and K. S. Raevskii, “Dizocilpine Blocks the Effects of Delta Sleep-Inducing Peptide-Induced Suppression of C-Fos Gene Expression in the Paraventricular Nucleus of the Hypothalamus in Rats,” Neuroscience and Behavioral Physiology, Vol. 34, No. 5, 2004, pp. 501-503.
http://dx.doi.org/10.1023/B:NEAB.0000022637.57852.e0
[81] K. V. Sudakov, P. E. Umryukhin, E. V. Koplik and K. V. Anokhin, “Expression of the C-Fos Gene during Emotional Stress in Rats: The Clocking Effect of Delta Sleep-Inducing Peptide,” Neuroscience and Behavioral Physiology, Vol. 31, No. 6, 2001, pp. 635-640.
http://dx.doi.org/10.1023/A:1012381413726
[82] D. A. Vilenskii, N. G. Levitskaia, L. A. Andreeva, L. Alfeeva, A. A. Kamenskii and N. F. Miasoedov, “Effects of Chronic Semax Administration on Exploratory Activity and Emotional Reaction in White Rats,” Rossiiskii Fiziologicheskii Zhurnal Imeni I.M. Sechenova, Vol. 93, No. 6, 2007, pp. 661-669.
[83] N. G. Levitskaia, D. A. Vilenskii, E. A. Sebentsova, L. A. Anreeva, A. A. Kamenskii and N. F. Miasoedov, “Influence of Semax on the Emotional State of White Rats in the Norm and against the Background of Cholecystokinin-Tetrapeptide Action,” Biology Bulletin, Vol. 37, No. 2, 2010, pp. 186-192.
http://dx.doi.org/10.1134/S1062359010020147
[84] K. O. Eremin, V. S. Kudrin, P. Saransaari, S. S. Oja, I. A. Grivennikov, N. F. Myasoedov and K. S. Rayevsky, “Semax, an ACTH(4-10) Analogue with Nootropic Properties, Activates Dopaminergic and Serotoninergic Brain Systems in Rodents,” Neurochemical Research, Vol. 30, No. 12, 2005, pp. 1493-1500.
http://dx.doi.org/10.1007/s11064-005-8826-8
[85] D. M. Ivanova, N. G. Levitskaya, L. A. Andreeva, A. A. Kamenskii and N. F. Myasoedov, “Comparative Study of Analgesic Potency of ACTH4-10 Fragment and Its Analog Semax,” Bulletin of Experimental Biology and Medicine, Vol. 143, No. 1, 2007, pp. 5-8.
http://dx.doi.org/10.1007/s10517-007-0002-5
[86] E. B. Arushanian and A. V. Popov, “Chronotropic Activity of Semax,” Eksperimental’Naia i Klinicheskaia FarMakologiia, Vol. 71, No. 2, 2008, pp. 14-16.
[87] K. O. Eremin, V. S. Kudrin, I. A. Grivennikov, N. F. Miasoedov and K. S. Rayevsky, “Effects of Semax on Dopaminergic and Serotoninergic Systems of the Brain,” Doklady Biological Sciences, Vol. 394, No. 1-6, 2004, pp. 1-3.
[88] K. O. Eremin, P. Saransaari, S. Oja and K. S. Raevskii, “Semax Potentiates Effects of D-Amphetamine on the Level of Extracellular Dopamine in the Sprague-Dawley Rat Striatum and on the Locomotor Activity of C57BL/6 Mice,” Eksperimental’Naia i Klinicheskaia Farmakologiia, Vol. 67, No. 2, 2004, pp. 8-11.
[89] Y. A. Zolotarev, S. E. Zhuikova, I. P. Ashmarin, N. F. Myasoedov, B. V. Vas’kovskii and G. E. Samonina, “Metabolism of PGP Peptide after Administration via Different Routes,” Bulletin of Experimental Biology and Medicine, Vol. 135, No. 4, 2003, pp. 361-364.
http://dx.doi.org/10.1023/A:1024612831380
[90] O. V. Dolotov, Iu. A. Zolotarev, E. M. Dorokhova, L. A. Andreeva, L. Alfeeva, I. A. Grivennikov and N. F. Myasoedov, “The Binding of Semax, ACTH 4-10 Heptapeptide, to Plasma Membranes of the Rat Forebrain Basal Nuclei and Its Biodegradation,” Russian Journal of Bioorganic Chemistry, Vol. 30, No. 3, 2004, pp. 213-217.
http://dx.doi.org/10.1023/B:RUBI.0000030127.46845.f0
[91] Y. A. Zolotarev, O. V. Dolotov, L. S. Inozemtseva, A. K. Dadayan, E. M. Dorokhova, L. A. Andreeva, L. Y. Alfeeva, I. A. Grivennikov and N. F. Myasoedov, “Degradation of the ACTH(4-10) Analog Semax in the Presence of Rat Basal Forebrain Cell Cultures and Plasma Membranes,” Amino Acids, Vol. 30, No. 4, 2006, pp. 403-408.
http://dx.doi.org/10.1007/s00726-006-0328-8
[92] K. V. Shevchenko, I. Y. Nagaev, L. Y. Alfeeva, L. A. Andreeva, A. A. Kamenskii, N. G. Levitskaia, V. P. Shevchenko, I. A. Grivennikov and N. F. Miasoedov, “Kinetics of Semax Penetration into the Brain and Blood of Rats after Its Intranasal Administration,” Russian Journal of Bioorganic Chemistry, Vol. 32, No. 1, 2006, pp. 57-62.
http://dx.doi.org/10.1134/S1068162006010055
[93] N. G. Levitskaya, E. A. Sebentsova, N. Glazova, O. G. Voskresenskaya, L. A. Andreeva, L. Alfeeva, A. A. Kamenskii and N. F. Miasoedov, “Study on the Neurotropic Activity of the Products of Semax Enzymatic Degradation,” Doklady Biological Sciences, Vol. 372, No. 1, 2000, pp. 243-246.
[94] V. N. Potaman, L. V. Antonova, V. A. Dubynin, D. A. Zaitzev, A. A. Kamensky, N. F. Myasoedov and V. N. Nezavibatko, “Entry of the Synthetic ACTH(4-10) Analogue into the Rat Brain Following Intravenous Injection,” Neuroscience Letters, Vol. 127, No. 1, 1991, pp. 133-136.
http://dx.doi.org/10.1016/0304-3940(91)90912-D
[95] T. Agapova, Ia. V. Agniullin, D. N. Silachev, M. I. Shadrina, P. A. Slominskii, S. I. Shram, S. A. Limborskaia and N. F. Miasoedov, “Effect of Semax on the Temporary Dynamics of Brain-Derived Neurotrophic Factor and Nerve Growth Factor Gene Expression in the Rat Hippocampus and Frontal Cortex,” Molekuliarnaia Genetika, Mikrobiologiia I Virusologiia, Vol. 3, 2008, pp. 28-32.
[96] M. Shadrina, T. Kolomin, T. Agapova, Y. Agniullin, S. Shram, P. Slominsky, S. Limborskaia and N. Miasoedov, “Comparison of the Temporary Dynamics of NGF and BDNF Gene Expression in Rat Hippocampus, Frontal Cortex, and Retina Under Semax Action,” Journal of Molecular Neuroscience, Vol. 41, No. 1, 2010, pp. 30-35.
http://dx.doi.org/10.1007/s12031-009-9270-z
[97] T. Y. Agapova, Y. V. Agniullin, D. N. Silachev, M. I. Shadrina, P. A. Slominsky, S. I. Shram, S. A. Limborskaia and N. F. Miasoedov, “Expression Changes Caused by the Peptide Semax in the Intracellular Signal Pathway Genes in Rat Hippocamp,” Doklady Biochemistry and Biophysics, Vol. 417, No. 1, 2007, pp. 334-336.
http://dx.doi.org/10.1134/S1607672907060129
[98] V. G. Dmitrieva, L. V. Dergunova, O. V. Povarova, V. I. Skvortsova, S. A. Limborskaia and N. F. Miasoedov, “The Effect of Semax and the C-Terminal Peptide PGP on Expression of Growth Factor Genes and Receptors in Rats under Conditions of Experimental Cerebral Ischemia,” Doklady Biochemistry and Biophysics, Vol. 422, No. 1, 2008, pp. 261-264.
http://dx.doi.org/10.1134/S1607672908050037
[99] V. G. Dmitrieva, O. V. Povarova, V. I. Skvortsova, S. A. Limborskaia, N. F. Miasoedov and L. V. Dergunova, “Semax and Pro-Gly-Pro Activate the Transcription of Neurotrophins and Their Receptor Genes after Cerebral Ischemia,” Cellular and Molecular Neurobiology, Vol. 30, No. 1, 2010, pp. 71-79.
http://dx.doi.org/10.1007/s10571-009-9432-0
[100] V. V. Stavchanskii, T. V. Tvorogova, A. Y. Botsina, V. I. Skvortsova, S. A. Limborskaia, N. F. Miasoedov and L. V. Dergunova, “The Effect of Semax and Its C-Terminal Peptide PGP on Expression of the Neurotrophins and Their Receptors in the Rat Brain during Incomplete Global Ischemia,” Molecular Biology, Vol. 45, No. 6, 2011, pp. 941-949.
http://dx.doi.org/10.1134/S0026893311050128
[101] E. I. Gusev, G. S. Burd, A. B. Gekht, V. I. Skvortsova, M. A. Bogomolova, M. V. Selikhova and S. M. Fidler, “The Clinico-Neurophysiological Study of the Effect of Cerebrolysin on Brain Function in the Acute and Early Recovery Periods of Hemispheric Ischemic Stroke,” Zhurnal Nevrologii i Psikhiatrii Imeni S.S. Korsakova, Vol. 94, No.1, 1994, pp. 9-13.
[102] E. I. Gusev, V. I. Skvortsova, A. V. Kovalenko and M. A. Sokolov, “Mechanisms of Brain Tissue Damage in Acute Focal Cerebral Ischemia,” Zhurnal Nevrologii i Psikhiatrii Imeni S.S. Korsakova, Vol. 99, No. 2, 1999, pp. 65-70.
[103] V. I. Skvortsova, K. S. Raevskii, A. V. Kovalenko, V. S. Kudrin, L. A. Malikova, M. A. Sokolov, A. A. Alekseev and E. I. Gusev, “Levels of Neurotransmitter Amino Acids in the Cerebrospinal Fluid of Patients with Acute Ischemic Insult,” Neuroscience and Behavioral Physiology, Vol. 30, No. 5, 2000, pp. 491-495.
http://dx.doi.org/10.1007/BF02462604
[104] V. I. Skvortsova, “Mechanisms of the Damaging Action of Cerebral Ischemia and Neuroprotection,” Vestnik Rossiiskoi Akademii Meditsinskikh Nauk, Vol. 11, 2003, pp. 74-80.
[105] E. I. Gusev and V. I. Skvortsova, “Brain Ischemia,” Kluwer Academic/Plenum Publishers, Berlin, 2003.
[106] V. I. Skvortsova, E. L. Nasonov, E. Zhuravleva, I. A. Grivennikov, E. L. Arsen’eva, I. I. Sukhanov, N. F. Miasoedov and E. I. Gusev, “Clinico-Immunobiochemical Monitoring of Factors of Focal Inflammation in the Acute Period of Hemispheric Ischemic Stroke,” Zhurnal Nevrologii I Psikhiatrii Imeni S.S. Korsakova, Vol. 99, No. 5, 1999, pp. 27-31.
[107] V. I. Shmyrev, N. V. Mironov, T. J. Zaets, P. V. Vladimirov, M. B. Torshin and A. G. Shestakov, “Efficacy and Tolerance of Semax in Patients with Initial Forms of Cerebrovascular Disease,” Kremljovskaya Medicina Clinichsky Vestnik, Vol. 3, 1998, pp. 8-9.
[108] E. I. Gusev, V. I. Skvortsova, N. F. Miasoedov, V. N. Nezavibat'ko, E. Zhuravleva and A. V. Vanichkin, “Effectiveness of Semax in Acute Period of Hemispheric Ischemic Stroke (A Clinical and Electrophysiological Study),” Zhurnal Nevrologii i Psikhiatrii Imeni S.S. Korsakova, Vol. 97, No. 6, 1997, pp. 26-34.
[109] E. I. Gusev, V. I. Skvortsova, G. A. Izykenova, A. A. Alekseev and S. A. Dambinova, “The Level of Autoantibodies to Glutamate Receptors in the Blood Serum of Patients in the Acute Period of Ischemic Stroke,” Zhurnal Nevrologii i Psikhiatrii Imeni S.S. Korsakova, Vol. 96, No. 5, 1996, pp. 68-72.
[110] N. F. Miasoedov, V. I. Skvortsova, E. L. Nasonov, E. I. Zhuravleva, I. A. Grivennikov, E. L. Arsen’eva and I. I. Sukhanov, “Investigation of Mechanisms of Neuro-Protective Effect of Semax in Acute Period of Ischemic Stroke,” Zhurnal Nevrologii i Psikhiatrii Imeni S.S. Korsakova, Vol. 99, No. 5, 1999, pp. 15-19.
[111] L. L. Bronner, D. S. Kanter and J. E. Manson, “Primary Prevention of Stroke,” New England Journal of Medicine, Vol. 333, No. 21, 1995, pp. 1392-1400.
[112] E. G. Stewart-Wynne and K. Jamrozik, “Risk Factors and Primary Prevention of Stroke,” Australian and New Zealand Journal of Medicine, Vol. 25, No. 3, 1995, pp. 191-194.
http://dx.doi.org/10.1111/j.1445-5994.1995.tb01519.x
[113] E. I. Gusev, V. I. Skvortsova and E. I. Chukanova, “Semax in Prevention of Disease Progress and Development of Exacerbations in Patients with Cerebrovascular Insufficiency,” Zhurnal Nevrologii i Psikhiatrii Imeni S.S. Korsakova, Vol. 105, No. 2, 2005, pp. 35-40.
[114] N. L. Sheremet, G. S. Polunin, A. N. Ovchinnikov, A. A. Kamenskii, N. G. Levitskaia, L. A. Andreeva, L. Iu. Alfeeva and I. Iu. Nagaev, “An Experimental Substantiation for Using the ‘Semax’ Neuroprotector in the Treatment of Optic-Nerve Diseases,” Vestnik Oftalmologii, Vol. 120, No. 6, 2004, pp. 25-27.
[115] N. I. Kurysheva, A. A. Shpak, E. E. Ioileva, L. I. Galanter, N. D. Nagornova, N. Iu. Shubina and N. N. Shlyshalova, “Semax in the Treatment of Glaucomatous Optic Neuropathy in Patients with Normalized Ophthalmic Tone,” Vestnik Oftalmologii, Vol. 117, No. 4, 2001, pp. 5-8.
[116] G. S. Polunin, S. M. Nurieva, D. L. Baiandin, N. L. Sheremet and L. A. Andreeva, “Evaluation of Therapeutic Effect of New Russian Drug Semax in Optic Nerve Disease,” Vestnik Oftalmologii, Vol. 116, No. 1, 2000, pp. 15-18.
[117] N. N. Osborne, M. Ugarte, M. Chao, G. Chidlow, J. H. Bae, J. P. Wood and M. S. Nash, “Neuroprotection in Relation to Retinal Ischemia and Relevance to Glaucoma,” Survey Ophthalmology, Vol. 43, No. 1, 1999, pp. S102-S128.
http://dx.doi.org/10.1016/S0039-6257(99)00044-2
[118] M. Schwartz and E. Yoles, “Optic Nerve Degeneration and Potential Neuroprotection: Implications for Glaucoma,” European Journal of Ophthalmology, Vol. 9, No. 1, 1999, pp. 9-11.
[119] O. V. Yurova, E. A. Turova, N. E. Morozova, O. A. Rogan and G. A. Nazarova, “Efficiency of Neuroprotective Therapy in the Treatment of Nonproliferative Diabetic Retinopathy,” Vestnik Vosstanovitel’Noj Mediciny, Vol. 6, 2011, pp. 35-38.
[120] J. E. Blalock, “The Syntax of Immune-Neuroendocrine Communication,” Immunology Today, Vol. 15, No. 11, 1994, pp. 504-511.
http://dx.doi.org/10.1016/0167-5699(94)90205-4
[121] V. A. Najjar and K. Nishioka, “‘Tuftsin’: A Natural Phagocytosis Stimulating Peptide,” Nature, Vol. 228, No. 5272, 1970, pp. 672-673.
http://dx.doi.org/10.1038/228672a0
[122] G. M. Edelman, B. A. Cunningham, W. E. Gall, P. D. Gottlieb, U. Rutishauser and M. J. Waxdal, “The Covalent Structure of an EntireγG Immunoglobulin Molecule,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 63, No. 1, 1969, pp. 78-85. http://dx.doi.org/10.1073/pnas.63.1.78
[123] T. J. Lukas, H. Munoz and B. W. Erickson, “Inhibition of C1-Mediated Immune Hemolysis by Monomeric and Dimeric Peptides from the Second Constant Domain of Human Immunoglobulin G,” Journal of Immunology, Vol. 127, No. 6, 1981, pp. 2555-2560.
[124] K. Nishioka, A. A. Amoscato, G. F. Babcock, R. A. Banks and J. H. Phillips, “Tuftsin: An Immunomodulating Peptide Hormone and Its Clinical Potential as a Natural Biological Response Modifier,” Cancer Investigation, Vol. 2, No. 1, 1984, pp. 39-49.
http://dx.doi.org/10.3109/07357908409020285
[125] J. E. Camel, K. S. Kim, G. H. Tchejeyan and G. H. Mahour, “Efficacy of Passive Immunotherapy in Experimental Postsplenectomy Sepsis due to Haemophilus influenzae Type B,” Journal of Pediatric Surgery, Vol. 28, No. 11, 1993, pp. 1441-1445.
http://dx.doi.org/10.1016/0022-3468(93)90427-M
[126] E. S. Caplan, H. Boltansky, M. J. Snyder, J. Rooney, N. J. Hoyt, G. Schiffman and R. A. Cowley, “Response of Traumatized Splenectomized Patients to Immediate Vaccination with Polyvalent Pneumococcal Vaccine,” Journal of Trauma, Vol. 23, No. 9, 1983, pp. 801-805.
http://dx.doi.org/10.1097/00005373-198309000-00005
[127] J. B. Green, S. R. Shackford, M. J. Sise and R. W. Powell, “Postsplenectomy Sepsis in Pediatric Patients Following Splenectomy for Trauma: A Proposal for a Multi-Institutional Study,” Journal of Pediatric Surgery, Vol. 21, No. 12, 1986, pp. 1084-1086.
http://dx.doi.org/10.1016/0022-3468(86)90014-X
[128] N. J. Bump, J. Lee, M. Wleklik, J. Reichler and V. A. Najjar, “Isolation and Subunit Composition of Tuftsin Receptor,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 83, No. 19, 1986, pp. 7187-7191.
http://dx.doi.org/10.1073/pnas.83.19.7187
[129] M. K. Chaudhuri, D. Konopinska, N. J. Bump and V. A. Najjar, “The Similarity between Tuftsin (Thr-Lys-Pro-Arg) Receptors and Tuftsin Antibody: A Case of Induced Molecular Mimicry,” Annals of the New York Academy of Sciences, Vol. 419, 1983, pp. 135-142.
http://dx.doi.org/10.1111/j.1749-6632.1983.tb37098.x
[130] E. Cillari, G. Di Gesu, S. Palmeri, D. Lio, A. Salerno, P. Li Voti and M. F. La Via, “Double-Rosetting Technique for the Detection of Fc Gamma Receptor-Positive T Lymphocytes,” Diagnostic Immunology, Vol. 1, No. 2, 1983, pp. 80-86.
[131] I. Z. Siemion and D. Konopinska, “Tuftsin Analogs and Their Biological Activity,” Molecular and Cellular Biochemistry, Vol. 41, No. 1, 1981, pp. 99-111.
http://dx.doi.org/10.1007/BF00225300
[132] W. J. W. Morrow, D. A. Isenberg, R. E. Sobol, R. B. Stricker and T. Kieber-Emmons, “AIDS Virus Infection and Autoimmunity: A Perspective of the Clinical, Immunological, and Molecular Origins of the Autoallergic Pathologies Associated with HIV Disease,” Clinical Immunology and Immunopathology, Vol. 58, No. 2, 1991, pp. 163-180.
http://dx.doi.org/10.1016/0090-1229(91)90134-V
[133] J. H. Phillips, G. F. Babcock and K. Nishioka, “Tuftsin: A Naturally Occurring Immunopotentiating Factor. I. In Vitro Enhancement of Murine Natural Cell-Mediated Cytotoxicity,” Journal of Immunology, Vol. 126, No. 3, 1981, pp. 915-921.
[134] M. S. Wleklik, M. Luczak and V. A. Najjar, “Tuftsin Induced Tumor Necrosis Activity,” Molecular and Cellular Biochemistry, Vol. 75, No. 2, 1987, pp. 169-174.
http://dx.doi.org/10.1007/BF00229905
[135] A. V. Valdman, M. M. Kozlovskaia, I. P. Ashmarin, M. F. Mineeva and K. V. Anokhin, “Central Effects of the Tetrapeptide Tuftsin,” Bulletin of Experimental Biology and Medicine, Vol. 92, No. 1, 1981, pp. 890-892.
http://dx.doi.org/10.1007/BF00836989
[136] Z. S. Herman, Z. Stachura, L. Opielka, I. Z. Siemion and E. Nawrocka, “Tuftsin and D-Arg3-Tuftsin Possess Analgesic Action,” Experientia, Vol. 37, No. 1, 1981, pp. 76-77. http://dx.doi.org/10.1007/BF01965580
[137] Z. S. Herman, Z. Stachura, I. Z. Siemion and E. Nawrocka, “Analgesic Activity of Some Tuftsin Analogs,” Naturwissenschaften, Vol. 67, No. 12, 1980, pp. 613-614.
http://dx.doi.org/10.1007/BF00396552
[138] Z. S. Herman, “Pharmacological Effects of Neurotensin, Substance P and Tuftsin,” Postepy Biochemii, Vol. 31, No. 3-4, 1985, pp. 487-508.
[139] Z. S. Herman, G. Laskawiec, K. Golba, A. Kubik and I. Z. Siemion, “L-Prolyl-L-Arginine Fragment of Tuftsin Peptide Chain Elicits Analgesic Action,” Naturwissenschaften, Vol. 72, No. 2, 1985, pp. 85-86.
http://dx.doi.org/10.1007/BF00508137
[140] T. P. Semenova, M. M. Kozlovskaia, E. A. Gromova and A. V. Val’dman, “Characteristics of the Action of Psychostimulants on Learning and Memory in Rats,” Bulletin of Experimental Biology and Medicine, Vol. 106, No. 8, 1988, pp. 161-163.
[141] T. P. Semenova, M. M. Kozlovskaia, A. V. Val’dman and E. A. Gromova, “Effect of Tuftsin and Its Analog on Learning, Memory and Exploratory Behavior in Rats,” Zhurnal Vysshei Nervnoi Deiatelnosti Imeni IP Pavlova, Vol. 38, No. 6, 1988, pp. 1033-1040.
[142] R. Veskov, N. S. Popova, Z. Ostoich, O. S. Adrianov and L. Rakich, “The Effect of the Tetrapeptide Tafcin on the Bioelectrical Activity of Brain Structures in Various Functional States of the Central Nervous System,” Bulletin of Experimental Biology and Medicine, Vol. 119, No. 4, 1995, pp. 365-355.
http://dx.doi.org/10.1007/BF02445890
[143] N. S. Popova, L. M. Gershtein, E. L. Dovedova and L. M. Kachalova, “The Correlation of the Behavioral, Bioelectrical and Cytobiochemical Characteristics of the Effect of Taftsin,” Zhurnal Vysshei Nervnoi Deiatelnosti Imeni IP Pavlova, Vol. 46, No. 1, 1996, 163-169.
[144] L. M. Gershtein, M. T. Dobrynina and A. V. Sergutina, “Morphochemical Changes in Brain Structures in the Course of Chronic Haloperidol Treatment and the Correction of these Changes with Tuftsin,” Molecular and Chemical Neuropathology, Vol. 30, No. 3, 1997, 213-222.
http://dx.doi.org/10.1007/BF02815099
[145] G. P. Semenova, E. V. Gurevich, M. M. Kozlovskaia and E. A. Gromova, “The Role of the Brain Monoaminergic Systems in the Effects of Tuftsin and Its Analog on Animal Emotional Behavior,” Fiziologicheskii Zhurnal SSSR Imeni I.M. Sechenova, Vol. 75, No. 6, 1989, pp. 759-765.
[146] K. V. Sudakov, “Oligopeptides in the Mechanisms of Resistance to Emotional Stress,” Patologicheskaia Fiziologiia I Eksperimentalnaia Terapiia, Vol. 1, 1989, pp. 3-11.
[147] M. M. Kozlovskaya, I. I. Kozlovskii, E. A. Val’dman and S. B. Seredenin, “Selank and Short Peptides of the Tuftsin Family in the Regulation of Adaptive Behavior in Stress,” Neuroscience and Behavioral Physiology, Vol. 33, No. 9, 2003, pp. 853-860.
http://dx.doi.org/10.1023/A:1025988519919
[148] R. Czabak-Garbacz, B. Cygan, L. Wolanski and I. Kozlovsky, “Influence of Long-Term Treatment with Tuftsin Analogue TP-7 on the Anxiety-Phobic States and Body Weight,” Pharmacological Reports, Vol. 58, No. 4, 2006, pp. 562-567.
[149] T. N. Sollertinskaya, M. V. Shorokhov, M. M. Kozloveskaya, I. I. Kozlovskii and K. V. Sudakov, “Compensatory and Antiamnestic Effects of Heptapeptide Selank in Monkeys,” Journal of Evolutionary Biochemistry and Physiology, Vol. 44, No. 3, 2008, pp. 332-340.
http://dx.doi.org/10.1134/S0022093008030101
[150] S. B. Seredenin, Yu. A. Blednov, B. A. Badyshtov, M. L. Gordey and Y. A. Nagovitsina, “Pharmacogenetic Analysis of Mechanisms of Emotional Stress: Effects of Benzodiazepines,” Annali Dell Istituto Superiore Di Sanita, Vol. 26, No. 1, 1990, pp. 81-87.
[151] S. B. Seredenin, M. M. Kozlovskaia, Iu. A. Blednov, I. I. Kozlovskii, T. P. Semenova, R. Czabak-Garbacz, V. N. Nezavibat’ko and N. F. Miasoedov, “The Anxiolytic Action of an Analog of the Endogenous Peptide Tuftsin on Inbred Mice with Different Phenotypes of the Emotional Stress Reaction,” Zhurnal Vysshei Nervnoi Deiatelnosti Imeni I.P. Pavlova, Vol. 48, No. 1, 1998, pp. 153-160.
[152] V. B. Narkevich, V. S. Kudrin, P. M. Klodt, A. A. Pokrovskii, M. M. Kozlovskaia, A. I. Maiskii and K. S. Raevskii, “Effects of Heptapeptide Selank on the Content of Monoamines and Their Metabolites in the Brain of BALB/C and C57Bl/6 Mice: A Comparative Study,” Eksperimentalnaia i Klinicheskaia Farmakologiia, Vol. 71, No. 5, 2008, pp. 8-12.
[153] I. I. Kozlovskii, L. A. Andreeva, M. M. Kozlovskaia, A. V. Nadorova and L. G. Kolik, “The Role of Opioid System in Peculiarities of Anti-Anxiety Effect of Peptide Anxiolytic Selank,” Eksperimentalnaia i Klinicheskaia Farmakologiia, Vol. 75, No. 2, 2012, pp. 10-13.
[154] K. Y. Sarkisova, M. A. Kulikov, I. S. Midzyanovskaya and A. A. Folomkina, “Dopamine-Dependent Nature of Depression-Like Behavior in WAG/Rij Rats with Genetic Absence Epilepsy,” Neuroscience and Behavioral Physiology, Vol. 38, No. 2, 2008, pp. 119-128.
http://dx.doi.org/10.1007/s11055-008-0017-z
[155] N. V. Kost, O. Sokolov, M. V. Gabaeva, I. A. Grivennikov, L. A. Andreeva, N. F. Miasoedov and A. A. Zozulya, “Semax and Selank Inhibit the Enkephalin-Degrading Enzymes from Human Serum,” Russian Journal of Bioorganic Chemistry, Vol. 27, No. 3, 2001, pp. 156-159.
http://dx.doi.org/10.1023/A:1011373002885
[156] D. Filliol, S. Ghozland, J. Chluba, M. Martin, H. W. Matthes, F. Simonin, K. Befort, C. Gavériaux-Ruff, A. Dierich, M. LeMeur, O. Valverde, R. Maldonado and B. L. Kieffer, “Mice Deficient for δ- and μ-Opioid Receptors Exhibit Opposing Alterations of Emotional Responses,” Nature Genetics, Vol. 25, No. 2, 2000, pp. 195-200.
http://dx.doi.org/10.1038/76061
[157] A. A. Zozulia, V. K. Meshavkin, A. V. Toropov and K. G. Gurevich, “Anxiolytic Effect of Dalargin on Rat Behavior in the Vogel Conflict Test and the Raised Cross-Like Labyrinth,” Bulletin of Experimental Biology and Medicine, Vol. 127, No. 2, 1999, 191-193.
http://dx.doi.org/10.1007/BF02433112
[158] V. K. Meshavkin, N. V. Kost, O. Y. Sokolov, Y. A. Zolotarev, N. F. Myasoedov and A. A. Zozulya, “Naloxone-Blocked Depriming Effect of Anxiolytic Selank on Apomorphine-Induced Behavioral Manifestations of Hyperfunction of Dopamine System,” Bulletin of Experimental Biology and Medicine, Vol. 142, No. 5, 2006, pp. 598-600. http://dx.doi.org/10.1007/s10517-006-0428-1
[159] O. Y. Sokolov, V. K. Meshavkin, N. V. Kost and A. A. Zozulya, “Effects of Selank on Behavioral Reactions and Activities of Plasma Enkephalin-Degrading Enzymes in Mice with Different Phenotypes of Emotional and Stress Reactions,” Bulletin of Experimental Biology and Medicine, Vol. 133, No. 2, 2002, pp. 133-135.
http://dx.doi.org/10.1023/A:1015582302311
[160] Y. A. Zolotarev, O. Y. Sokolov, N. V. Kost, B. V. Vas'kovskii, N. F. Miasoedov and A. A. Zozulia, “Leu-Enkephalin Homogeneously Labeled with Tritium in Studying the Selank Inhibiting Effect on the Enkephalin-Degrading Enzymes of Human Plasma,” Bioorganicheskaia Khimiia, Vol. 30, No. 3, 2004, pp. 234-240.
[161] T. P. Semenova, I. I. Kozlovskii, N. M. Zakharova and M. M. Kozlovskaia, “Comparison of the Effects of Selank and Tuftsin on the Metabolism of Serotonin in the Brain of Rats Pretreated with PCPA,” Eksperimentalnaia i Klinicheskaia Farmakologiia, Vol. 72, No. 4, 2009, pp. 6-8.
[162] M. M. Kozlovskaia, S. B. Seredenin, I. I. Kozlovskii, A. V. Valdman, L. A. Andreeva and N. F. Myasoedov, “A Comparative Study of the Effect of Tuftsin Fragments on Passive Avoidance Learning Characteristics,” Pharmaceutical Chemistry Journal, Vol. 35, No. 3, 2001, pp. 121-123. http://dx.doi.org/10.1023/A:1010441409246
[163] I. I. Kozlovskii and N. D. Danchev, “The Optimizing Action of the Synthetic Peptide Selank on a Conditioned Active Avoidance Reflex in Rats,” Neuroscience and Behavioral Physiology, Vol. 33, No. 7, 2003, pp. 639-643.
http://dx.doi.org/10.1023/A:1024444321191
[164] R. Czabak-Garbacz, B. Cygan, I. I. Kozlovskii, “Tuftsin Analog and Behavior of Rabbits after Electric Stimulation of Ventromedial Hypothalamus Nucleus (VMH),” Behavioural Pharmacology, Vol. 7, No. 1, 1996, pp. 22-25.
http://dx.doi.org/10.1097/00008877-199605001-00050
[165] T. Esch, G. B. Stefano, G. L. Fricchione and H. Benson, “The Role of Stress in Neurodegenerative Diseases and Mental Disorders,” Neuro Endocrinology Letters, Vol. 23, No. 3, 2002, pp. 199-208.
[166] M. Alonso, M. R. M. Vianna, A. M. Depino, T. Mello e Souza, P. Pereira, G. Szapiro, H. Viola, F. Pitossi, I. Izquierdo and J. H. Medina, “BDNF-Triggered Events in the Rat Hippocampus are Required for both Short- and Long-Term Memory Formation,” Hippocampus, Vol. 12, No. 4, 2002, pp. 551-560.
http://dx.doi.org/10.1002/hipo.10035
[167] L. Minichiello, M. Korte, D. Wolfer, R. Kühn, K. Unsicker, V. Cestari, C. Rossi-Arnaud, H-P. Lipp, T. Bonhoeffer and R. Klein, “Essential Role for TrkB Receptors in Hippocampus-Mediated Learning,” Neuron, Vol. 24, No. 2, 1999, pp. 401-414.
http://dx.doi.org/10.1016/S0896-6273(00)80853-3
[168] M. Mizuno, K. Yamada, A. Olariu, H. Nawa and T. Nabeshima, “Involvement of Brain-Derived Neurotrophic Factor in Spatial Memory Formation and Maintenance in a Radial Arm Maze Test in Rats,” The Journal of Neuroscience, Vol. 20, No. 18, 2000, pp. 7116-7121.
[169] L. S. Inozemtseva, E. A. Karpenko, O. V. Dolotov, N. G. Levitskaya, A. A. Kamensky, L. A. Andreeva and I. A. Grivennikov, “Intranasal Administration of the Peptide Selank Regulates BDNF Expression in the Rat Hippocampus in Vivo,” Doklady Biological Sciences, Vol. 421, No. 1, 2008, pp. 241-243.
http://dx.doi.org/10.1134/S0012496608040066
[170] T. P. Semenova, M. M. Kozlovskaia, N. I. Medvinskaia and I. I. Koslovskii, “Restoration with Heptapeptide (Synthetic Taftsin Derivative) of Cognitive Functions Impaired by Antenatal Hypoxia,” Bulletin of Experimental Biology and Medicine, Vol. 125, No. 3, 1998, pp. 289-292.
[171] T. P. Semenova, M. M. Kozlovskaia, A. V. Zuikov, I. I. Kozlovskii, N. M. Zakharova and L. A. Andreeva, “Selank-Induced Normalizing Effects on the Integrative Brain Activity and Biogenic Amine Level Disorders due to Antenatal Hypoxia,” Rossiiskii Fiziologicheskii Zhurnal Imeni I.M. Sechenova, Vol. 92, No. 11, 2006, pp. 1332-1338.
[172] T. P. Semenova, M. M. Kozlovskaya, N. M. Zakharova, I. I. Kozlovskii and A. V. Zuikov, “Effect of Selank on Cognitive Processes after Damage Inflicted to the Cerebral Catecholamine System during Early Ontogeny,” Bulletin of Experimental Biology and Medicine, Vol. 144, No. 5, 2007, pp. 689-691.
[173] I. I. Kozlovskii, Iu. F. Belozertsev, T. P. Semenova, A. V. Zuikov and M. M. Kozlovskaia, “Compensatory Effect of Selank on the Mnestic Functions Disturbed by Neurotoxic Damage of the Noradrenergic System of the Rat Brain,” Eksperimental’Naia i Klinicheskaia Farmakologiia, Vol. 71, No. 2, 2008, pp. 3-7.
[174] T. P. Semenova, I. I. Kozlovskii, N. M. Zakharova and M. M. Kozlovskaia, “Experimental Optimization of Learning and Memory Processes by Selank,” Eksperimental’Naia i Klinicheskaia Farmakologiia, Vol. 73, No. 8, 2010, pp. 2-5.
[175] T. P. Semenova, M. M. Kozlovskaya, A. V. Zuikov, I. I. Kozlovskii and L. A. Andreeva, “Seasonal Effects of Selank on the Behavior of Hibernating Animals,” Bulletin of Experimental Biology and Medicine, Vol. 140, No. 6, 2005, pp. 705-707.
http://dx.doi.org/10.1007/s10517-006-0060-0
[176] V. G. Skrebitskii, R. V. Kondratenko, I. S. Povarov and V. I. Derevyagin, “Peptidergic Modulation of Synaptic Activity in the Hippocampus,” Neuroscience and Behavioral Physiology, Vol. 43, No. 5, 2013, pp. 650-655.
http://dx.doi.org/10.1007/s11055-013-9786-0
[177] T. P. Semenova, M. M. Kozlovskaya, A. V. Zuikov, I. I. Kozlovskii, N. M. Zakharova and L. A. Andreeva, “Use of Selank to Correct Measures of Integrative Brain Activity and Biogenic Amine Levels in Adult Rats Resulting from Antenatal Hypoxia,” Neuroscience and Behavioral Physiology, Vol. 38, No. 2, 2008, pp. 203-207.
http://dx.doi.org/10.1007/s11055-008-0030-2
[178] F. I. Ershov, P. N. Uchakin, O. N. Uchakina, M. V. Mezentseva, L. A. Alekseeva and N. F. Miasoedov, “Antiviral Activity of Immunomodulator Selank in Experimental Influenza Infection,” Voprosy Virusologii, Vol. 54, No. 5, 2009, pp. 19-24.
[179] L. A. Andreeva, M. V. Mezentseva, I. Yu. Nagaev, I. M. Shapoval, V. E. Shcherbenko, L. A. Potapova, L. I. Russu, A. N. Narovlyansky, F. I. Ershov and N. F. Myasoedov, “Ex Vivo Screening of Prospective Peptide Drugs: New Approaches,” Doklady Biological Sciences, Vol. 434, No. 1, 2010, pp. 300-303.
http://dx.doi.org/10.1134/S0012496610050029
[180] O. N. Uchakina, P. N. Uchakin, N. F. Miasoedov, L. A. Andreeva, V. E. Shcherbenko, M. V. Mezentseva, M. V. Gabaeva, O. Iu. Sokolov, A. A. Zozulia and F. I. Ershov, “Immunomodulatory Effects of Selank in Patients with Anxiety-Asthenic Disorders,” Zhurnal Nevrologii i Psikhiatrii Imeni S.S. Korsakova, Vol. 108, No. 5, 2008, pp. 71-75.
[181] I. P. Ashmarin, G. E. Samonina, L. A. Lyapina, A. A. Kamenskiia, N. G. Levitskaya, I. A. Grivennikov, O. V. Dolotov, L.A. Andreeva and N. F. Myasoedov, “Natural and Hybrid (‘Chimeric’) Stable Regulatory Glyproline Peptides,” Pathophysiology, Vol. 11, No. 4, 2005, pp. 179-185. http://dx.doi.org/10.1016/j.pathophys.2004.10.001
[182] L. A. Andreeva, I. Yu. Nagaev, M. V. Mezentseva, I. M. Shapoval, R. Ya. Podchernyaeva, V. E. Shcherbenko, L. A. Potapova, L. I. Russu, F. I. Ershov and N. F. Myasoedov, “Antiviral Properties of Structural Fragments of the Peptide Selank,” Doklady Biological Sciences, Vol. 431, No. 1, 2010, pp. 79-82.
http://dx.doi.org/10.1134/S0012496610020031
[183] Yu. A. Zolotarev, A. K. Dadayan, O. V. Dolotov, V. S. Kozik and N. F. Myasoedov, “Evenly Tritium-Labeled Peptides and Their in Vivo and in Vitro Biodegradation,” Russian Journal of Bioorganic Chemistry, Vol. 32, No. 2, 2006, pp. 166-173.
http://dx.doi.org/10.1134/S1068162006020099
[184] T. A. Kolomin, M. I. Shadrina, Ya. V. Agniullin, S. I. Shram, P. A. Slominskii, S. A. Limborska and N. F. Myasoedov, “Transcriptomic Response of Rat Hippocampus and Spleen Cells to Single and Chronic Administration of the Peptide Selank,” Doklady Biochemistry and Biophysics, Vol. 430, No. 1, 2010, pp. 5-6.
http://dx.doi.org/10.1134/S1607672910010023
[185] G. Dennis, B. T. Sherman, D. A. Hosack, J. Yang, W. Gao, H. C. Lane and R. A. Lempicki, “DAVID: Database for Annotation, Visualization, and Integrated Discovery,” Genome Biology, Vol. 4, No. 5, 2003, p. P3.
http://dx.doi.org/10.1186/gb-2003-4-5-p3
[186] D. W. Huang, B. T. Sherman and R. A. Lempicki, “Systematic and Integrative Analysis of Large Gene Lists Using DAVID Bioinformatics Resources,” Nature Protocols, Vol. 4, No. 1, 2008, pp. 44-57.
[187] S. A. Limborska, T. A. Kolomin, M. I. Shadrina, S. I. Shram, P. A. Slominsky, and N. F. Myasoedov, “Transcriptome Alteration in Hippocampus and Spleen under the Treatment of Regulative Peptide Selank and Some of Its Fragments,” Proceedings of the biology of genomes, Cold Spring Harbor Laboratory Meeting, Cold Spring Harbor, 11-15 May 2010, p. 179.
[188] B. Katz and R. Miledi, “Further Study of the Role of Calcium in Synaptic Transmission,” Journal of Physiology, Vol. 207, No. 3, 1970, pp. 789-801.
[189] N. Gabellini, “Transcriptional Regulation by cAMP and Ca2+ Links the Na+/Ca2+ Exchanger 3 to Memory and Sensory Pathways,” Molecular Neurobiology, Vol. 30, No. 1, 2004, pp. 91-116.
http://dx.doi.org/10.1385/MN:30:1:091
[190] B. I. Kanner, “Glutamate Transporters from Brain: A Novel Neurotransmitter Transporter Family,” FEBS Letters, Vol. 325, No. 1-2, 1993, pp. 95-99.
http://dx.doi.org/10.1016/0014-5793(93)81421-U
[191] S. M. Ferguson and R. D. Blakely, “The Choline Transporter Resurfaces: New Roles for Synaptic Vesicles?” Molecular Interventions, Vol. 4, No. 1, 2004, pp. 22-37.
http://dx.doi.org/10.1124/mi.4.1.22
[192] A. Dahlin, J. Royall, J.G. Hohmann and J. Wang, “Expression Profiling of the Solute Carrier Gene Family in the Mouse Brain,” Journal of Pharmacology and Experimental Therapeutics, Vol. 329, No. 2, 2009, pp. 558-570.
http://dx.doi.org/10.1124/jpet.108.149831
[193] H. Takanaga, B. Mackenzie, Y. Suzuki and M. A. Hediger, “Identification of Mammalian Proline Transporter SIT1 (SLC6A20) with Characteristics of Classical System Imino,” Journal of Biological Chemistry, Vol. 280, No. 10, 2005, pp. 8974-8984.
http://dx.doi.org/10.1074/jbc.M413027200
[194] J. K. Harrison, Y. Jiang, S. Chen, Y. Xia, D. Maciejewski, R. K. McNamara, W. J. Streit, M. N. Salafranca, S. Adhikari, D. A. Thompson, P. Botti, K. B. Bacon and L. L. Feng, “Role for Neuronally Derived Fractalkine in Mediating Interactions between Neurons and CX3CR1-Expressing Microglia,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 95, No. 18, 1998, pp. 10896-10901.
http://dx.doi.org/10.1073/pnas.95.18.10896
[195] A. Nishiyori, M. Minami, Y. Ohtani, S. Takami, J. Yamamoto, N. Kawaguchi, T. Kume, A. Akaike and M. Sato, “Localization of Fractalkine and CX3CR1 mRNAs in Rat Brain: Does Fractalkine Play a Role in Signaling from Neuron to Microglia?” FEBS Letters, Vol. 429, No. 2, 1998, pp. 167-172.
http://dx.doi.org/10.1016/S0014-5793(98)00583-3
[196] O. Meucci, A. Fatatis, A. A. Simen and R. J. Miller, “Expression of CX3CR1 Chemokine Receptors on Neurons and Their Role in Neuronal Survival,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 97, No. 14, 2000, pp. 8075-8080.
http://dx.doi.org/10.1073/pnas.090017497
[197] T. Kolomin, M. Shadrina, L. Andreeva, P. Slominsky, S. Limborska and N. Myasoedov, “Expression of Inflammation-Related Genes in Mouse Spleen under Tuftsin Analog Selank,” Regulatory Peptides, Vol. 170, No. 1-3, 2011, pp. 18-23. http://dx.doi.org/10.1016/j.regpep.2011.05.001
[198] T. A. Kolomin, M. I. Shadrina, P. A. Slominsky, S. A. Limborska and N. F. Myasoedov, “Changes in Expression of the Genes for Chemokines, Cytokines, and Their Receptors in Response to Selank and Its Fragments,” Russian Journal of Genetics, Vol. 47, No. 5, 2011, pp. 629-631. http://dx.doi.org/10.1134/S1022795411050103
[199] D. Kessler, K. Lloyd, G. Lewis and D. P. Gray, “Cross Sectional Study of Symptom Attribution and Recognition of Depression and Anxiety in Primary Care,” British Medical Journal, Vol. 318, No. 7181, 1999, pp. 436-439.
http://dx.doi.org/10.1136/bmj.318.7181.436
[200] R. C. Kessler, R. L. DuPont, P. Berglund and H.-U. Wittchen, “Impairment in Pure and Comorbid Generalized Anxiety Disorder and Major Depression at 12 Months in Two National Surveys,” The American Journal of Psychiatry, Vol. 156, No. 12, 1999, pp. 1915-1923.
[201] H.-U. Wittchen, “The Many Faces of Social Anxiety Disorder,” International Clinical Psychopharmacology, Vol. 15, No. 1, 2000, pp. 7-12.
http://dx.doi.org/10.1097/00004850-200007001-00003
[202] H-U. Wittchen, R. M. Carter, H. Pfister, S. A. Montgomery and R. C. Kessler, “Disabilities and Quality of Life in Pure and Comorbid Generalized Anxiety Disorder and Major Depression in a National Survey,” International Clinical Psychopharmacology, Vol. 15, No. 6, 2000, pp. 319-328. http://dx.doi.org/10.1097/00004850-200015060-00002
[203] H-U. Wittchen, R. C. Kessler, H. Pfister, M. Höfler and R. Lieb, “Why Do People with Anxiety Disorders Become Depressed? A Prospective-Longitudinal Community Study,” Acta Psychiatrica Scandinavica, Vol. 102, No. 406, 2000, pp. 14-23.
http://dx.doi.org/10.1111/j.0065-1591.2000.acp29-03.x
[204] G. G. Neznamov, E. S. Teleshova, V. K. Bochkarev, V. V. Koschelev and T. S. Syunyakov, “Novel Anxiolytic Selank: Results of Phase II Clinical Trials,” European Neuropsychopharmacology, Vol. 15, No. 2, 2005, pp. 159-160. http://dx.doi.org/10.1016/S0924-977X(05)80332-3
[205] T. S. Syunyakov, E. S. Teleshova, S. A. Syunyakov and G. G. Neznamov, “The Effect of Novel Anxiolytic Drug Selank on the Psychophysiological Parameters of Patients with Generalized Anxiety Disorder,” Proceedings of Traditions and Innovations in Psychiatry: WPA Regional Meeting, St Petersburg, 10-12 June 2010, pp. 22-23.
[206] A. A. Zozulia, G. G. Neznamov, T. S. Siuniakov, N. V. Kost, M. V. Gabaeva, O. Iu. Sokolov, E. V. Serebriakova, O. A. Siranchieva, A. V. Andriushchenko, E. S. Telesheva, S. A. Siuniakov, A. B. Smulevich, N. F. Miasoedov and S. B. Seredenin, “Efficacy and Possible Mechanisms of Action of a New Peptide Anxiolytic Selank in the Therapy of Generalized Anxiety Disorders and Neurasthenia,” Zhurnal Nevrologii i Psikhiatrii Imeni S.S. Korsakova, Vol. 108, No. 4, 2008, pp. 38-48.
[207] A. A. Zozulya, N. V. Kost, O. Y. Sokolov, M. V. Gabaeva, I. A. Grivennikov, L. N. Andreeva, Yu. A. Zolotarev, S. V. Ivanov, A. V. Andryushchenko, N. F. Myasoedov and A. B. Smulevich, “The Inhibitory Effect of Selank on Enkephalin-Degrading Enzymes as a Possible Mechanism of Its Anxiolytic Activity,” Bulletin of Experimental Biology and Medicine, Vol. 131, No. 4, 2001, pp. 315-317.
http://dx.doi.org/10.1023/A:1017979514274
[208] E. S. Teleshova, V. K. Bochkarev, T. S. Syunyakov, T. P. Bugaeva and G. G. Neznamov, “Results of Clinical and Pharmacological Studies of Anxiolytic Peptide Selank,” Psychiatry, Vol. 4, No. 4, 2010, pp. 26-35.
[209] Y. V. Ivanov and V. V. Iasnetsov, “The Effect of Semax and Mexidol on the Course of Acute Pancreatitis in Rats,” Eksperimental’Naia i Klinicheskaia Farmakologiia, Vol. 63, No. 1, 2000, pp. 41-44.
[210] I. O. Ivanikov, M. E. Brekhova, G. E. Samonina, N. F. Myasoedov and I. P. Ashmarin, “Therapy of Peptic Ulcer with Semax Peptide,” Bulletin of Experimental Biology and Medicine, Vol. 134, No. 1, 2002, pp. 73-74.
http://dx.doi.org/10.1023/A:1020621124776
[211] S. E. Zhuikova, V. I. Sergeev, G. E. Samonina and N. F. Myasoedov, “Possible Mechanism Underlying the Effect of Semax on the Formation of Indomethacin-Induced Ulcers in Rats,” Bulletin of Experimental Biology and Medicine, Vol. 133, No. 6, 2002, pp. 577-579.
http://dx.doi.org/10.1023/A:1020285909696
[212] S. E. Zhuikova, E. A. Smirnova, Z. V. Bakaeva, G. E. Samonina and I. P. Ashmarin, “Effect of Semax on Homeostasis of Gastric Mucosa in Albino Rats,” Bulletin of Experimental Biology and Medicine, Vol. 130, No. 3, 2000, pp. 871-873.
http://dx.doi.org/10.1007/BF02682256
[213] L. A. Lyapina, V. E. Pastorova, G. E. Samonina and I. P. Ashmarin, “The Effect of Prolil-Glycil-Proline (PGP) Peptide and PGP-Rich Substances on Haemostatic Parameters of Rat Blood,” Blood Coagulation and Fibrinolysis, Vol. 11, No. 5, 2000, pp. 409-414.
http://dx.doi.org/10.1097/00001721-200007000-00002
[214] M. E. Grigorjeva and L. A. Lyapina, “Anticoagulation and Antiplatelet Effects of Semax under Conditions of Acute and Chronic Immobilization Stress,” Bulletin of Experimental Biology and Medicine, Vol. 149, No. 1, 2010, pp. 44-46. http://dx.doi.org/10.1007/s10517-010-0871-x
[215] M. A. Volodina, E. A. Sebentsova, N. Y. Glazova, D. M. Manchenko, L. S. Inozemtseva, O. V. Dolotov, L. A. Andreeva, N. G. Levitskaya, A. A. Kamensky and N. F. Myasoedov, “Correction of Long-Lasting Negative Effects of Neonatal Isolation in White Rats Using Semax,” Acta Naturae, Vol. 4, No. 1, 2012, pp. 86-92.
[216] S. J. Tsai, “Semax, an Analogue of Adrenocorticotropin (4-10), Is a Potential Agent for the Treatment of Attention-Deficit Hyperactivity Disorder and Rett Syndrome,” Medical Hypotheses, Vol. 68, No. 5, 2007, pp. 1144-1146.
http://dx.doi.org/10.1016/j.mehy.2006.07.017
[217] T. S. Pavlov, G. E. Samonina, L. A. Andreeva, N. F. Myasoedov and I. P. Ashmarin, “A New Property of the Synthetic Anxiolytic Selank and Its Derivatives,” Doklady Biological Sciences, Vol. 397, No. 1-6, 2004, pp. 281-283.
http://dx.doi.org/10.1023/B:DOBS.0000039692.94366.2c
[218] T. S. Pavlov, G. E. Samonina, Z. V. Bakaeva, Y. A. Zolotarev and A. A. Guseva, “Selank and Its Metabolites Maintain Homeostasis in the Gastric Mucosa,” Bulletin of Experimental Biology and Medicine, Vol. 143, No. 1, 2007, pp. 51-53.
http://dx.doi.org/10.1007/s10517-007-0014-1
[219] T. S. Pavlov, L. Sanzhieva, G. E. Samonina, V. I. Sergeev and T. V. Lelekova, “Effect of New Synthetic Anxiolytic Selank on Gastric Wall Blood Flow and Mesenteryc Lymphatic Vessels Contractility in Anesthetized Rats,” Rossiiskii Fiziologicheskii Zhurnal Imeni I.M. Sechenova, Vol. 91, No. 2, 2005, pp. 178-183.
[220] L. A. Liapina, V. E. Pastorova, T. Y. Obergan, G. E. Samonina, I. P. Ashmarin and N. F. Miasoedov, “Comparison of Anticoagulant Effects of Regulatory Proline-Containing Oligopeptides. Specificity of Glyprolines, Semax, and Selank and Potential of Their Practical Application,” Biology Bulletin, Vol. 33, No. 2, 2006, pp. 153-161.
http://dx.doi.org/10.1134/S1062359006020099

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.