Cell Surface Determinants Important for Biofilm-Based Solid Substrate Degradation

DOI: 10.4236/jbnb.2013.44A001   PDF   HTML     2,988 Downloads   4,443 Views   Citations


The study links targeted cell surface characterization to the quantified capacity of cellulose degrading Pseudomonas fluorescens cells to colonize a (similarly characterized) cellulosic carrier. The experiments were conducted to clarify the effect of cultivation conditions on the achieved state of this carrier colonization. The suggested approach seems to be sufficient to verify the right choice of cultivation medium as a major factor determining the binding complementarity between microbial cells and solid cellulose.

Share and Cite:

J. Dostálková, V. Jirků, G. Procházková, L. Křiklavová, T. Lederer and T. Brányik, "Cell Surface Determinants Important for Biofilm-Based Solid Substrate Degradation," Journal of Biomaterials and Nanobiotechnology, Vol. 4 No. 4A, 2013, pp. 1-9. doi: 10.4236/jbnb.2013.44A001.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] L. R. Lynd, P. J. Weimer, W. H. Zyl and I. S. Pretorius, “Microbial Cellulose Utilization: Fundamentals and Biotechnology,” Microbiology and Molecular Biology Reviews, Vol. 66, No. 3, 2002, pp. 506-577.
[2] M. Wenzel, I. Schonig, M. Berchtold, P. Kampfer and H. Konig, “Aerobic and Facultatively Anaerobic Cellulolytic Bacteria form the Gut of the Termite Zootermopsis angusticollis,” Journal of Applied Microbiology, Vol. 92, No. 1, 2002, pp. 32-40.
[3] Z. Shi, G. Luo and G. Wang, “Cellulomonas carbonis sp. nov., Isolated from Coal Mine Soil,” International Journal of Systematic and Evolutionary Microbiology, Vol. 62, No. P8, 2012, pp. 2004-2010.
[4] W. Schwarz, “The Cellulosome and Cellulose Degradation by Anaerobic Bacteria,” Applied Microbiology and Biotechnology, Vol. 56, No. 5-6, 2001, pp. 634-649.
[5] A. N. Alonso, P. J. Pomposiello and S. B. Leschine. “Biofilm Formation in the Life Cycle of the Cellulolytic Actinomycete Thermobifida fusca,” Biofilms, 2008, pp. 1-11. http://dx.doi.org/10.1017/S1479050508002238
[6] Z. Wang and S. Chen, “Potential of Biofilm-Based Biofuel Production,” Applied Microbiology and Biotechnology, Vol. 83, No. 1, 2009, pp. 1-18.
[7] J. M. Young, S. B. Leschine and G. Reguera, “Reversible Control of Biofilm formation by Cellulomonas spp. in Response to Nitrogen Availability,” Environmental Microbiology, Vol. 14, No. 3, 2012, pp. 594-604.
[8] K. Ramasamy and H. Verachtert, “Localization of Cellulase Components in Pseudomonas sp. Isolated from Activated Sludge,” Microbiology, Vol. 117, No. 1, 1980, pp. 181-191. http://dx.doi.org/10.1099/00221287-117-1-181
[9] M. A. Luis, L. M. A. Ferreira, T. M. Wood, G. Williamson, C. Faulds, G. P. Hazlewood, G. W. Black and H. J. Gilbert, “A Modular Esterase from Pseudomonas fluorescens subsp. cellulosa Contains a Non-Catalytic Cellulose-Binding Domain,” The Biochemical Journal, Vol. 294, Pt. 2, 1993, pp. 349-355.
[10] C. L. Cheng and J. S. Chang, “Hydrolysis of Lignocellulosic Feedstock by Novel Cellulases Originating from Pseudomonas sp. CL3 for Fermentative Hydrogen Production,” Bioresource Technology, Vol. 102, No. 18, 2011, pp. 8628-8634.
[11] M. Fletcher, “Attachment of Pseudomonas fluorescens to Glass and Influence of Electrolytes on Bacterium-Substratum Separation Distances,” Journal of Bacteriology, Vol. 170, No. 5, 1988, pp. 2027-2030.
[12] B. Song and L. G. Leff, “Influence of Magnesium Ions on Biofilm Formation by Pseudomonas fluorescens,” Microbiological Research, Vol. 161, No. 4, 2006, pp. 355-361. http://dx.doi.org/10.1016/j.micres.2006.01.004
[13] J. Kives, B. Orgaz and C. SanJosé, “Polysaccharide Differences between Planktonic and Biofilm-Associated EPS from Pseudomonas fluorescens B52,” Colloids and Surfaces B: Biointerfaces, Vol. 52, No. 2, 2006, pp. 123-127. http://dx.doi.org/10.1016/j.colsurfb.2006.04.018
[14] D. Nercessian, F. B. Duville, M. Desimone, S. Simison and J. B. Busalmen, “Metabolic Turnover and Catalase Activity of Biofilms of Pseudomonas fluorescens (ATCC 17552) as Related to Copper Corrosion,” Water Research, Vol. 44, No. 8, 2010, pp. 2592-2600.
[15] I. E. Ivanov, C. D. Boyd, P. D. Newell, M. E. Schwartz, L. Turnbull, M. S. Johnson, C. B. Whitchurch, G. A. O’Toole and T. A. Camesano, “Atomic Force and Super-Resolution Microscopy Support a Role for LapA as a Cell-Surface Biofilm Adhesin of Pseudomonas fluorescens,” Research in Microbiology, Vol. 163, No. 9-10, 2012, pp. 685-691.
[16] R. Djeribi, W. Bouchloukh, T. Jouenne and B. Menaa, “Characterization of Bacterial Biofilms Formed on Urinary Catheters,” American Journal of Infection Control, Vol. 40, No. 9, 2012, pp. 854-959.
[17] C. O’Sullivan, P. C. Burrell, M. Pasmore, W. P. Clarke and L. L. Blackall, “Application of Flowcell Technology for Monitoring Biofilm Development and Cellulose Degradation in Leachate and Rumen Systems,” Bioresource Technology, Vol. 100, No. 1, 2009, pp. 492-496.
[18] A. Dumitrache, G. Wolfaardt, G. Allen, S. N. Liss and L. R. Lynd, “Form and Function of Clostridium thermocellum Biofilms,” Applied and Environmental Microbiology, Vol. 79, No. 1, 2013, pp. 231-239.
[19] Z. W. Wang, S. H. Lee, J. Elkins and J. Morrell-Falvey, “Spatial and Temporal Dynamics of Cellulose Degradation and Biofilm Formation by Caldicellulosiruptor obsidiansis and Clostridium thermocellum,” AMB Express, Vol. 1, No. 1, 2011, p. 30.
[20] Z. W. Wang, S. H. Lee, J. G. Elkins, Y. Li, S. HamiltonBrehm and J. L. Morrell-Falvey, “Continuous Live Cell Imaging of Cellulose Attachment by Microbes under Anaerobic and Thermophilic Conditions Using Confocal Microscopy,” Journal of Environmental Sciences, Vol. 25, No. 5, 2013, pp. 849-856.
[21] D. Cunliffe, C. Smart, C. Alexander and E. Vulfson, “Bacterial Adhesion at Synthetic Surfaces,” Applied Environment Microbiology, Vol. 65, No. 11, 1999, pp. 4995-5002.
[22] N. Mohamed, M. Teeters, J. Patti, M. Hook and J. Ross, “Inhibition of Staphylococcus aureus Adherence to Collagen under Dynamic Conditions,” Infection and Immunity, Vol. 67, No. 2, 1999, pp. 589-594.
[23] G. Bruinsma, H. C. van der Mei and H. J. Bussher, “Bacterial Adhesion to Surface Hydrophilic and Hydrophobic Contact Lenses,” Biomaterials, Vol. 22, No. 24, 2001, pp. 3217-3224.
[24] W. Dunne, “Bacterial Adhesion: Seen Any Good Biofilms Lately?” Clinical Microbiology Reviews, Vol. 15, No. 2, 2003, pp. 155-166.
[25] N. Cerca, G. B. Pier, M. Vilanova, R. Oliveira and J. Azeredo, “Quantitative Analysis of Adhesion and Biofilm Formation on Hydrophilic and Hydrophobic Surfaces of Clinical Isolates of Staphylococcus epidermidis,” Research in Microbiology, Vol. 156, No. 4, 2005, pp. 506-514. http://dx.doi.org/10.1016/j.resmic.2005.01.007
[26] F. Hamadi and H. Latrache, “Comparison of Contact Angle Measurement and Microbial Adhesion to Solvents for Assaying Electron Donor-Electron Acceptor (Acid-Base) Properties of Bacterial Surface,” Colloids and Surfaces B: Biointerfaces, Vol. 65, No. 1, 2008, pp. 134-139.
[27] M. Kurec and T. Brányik, “The Role of Physicochemical Interactions and FLO Genes Expression in the Immobilization of Industrially Important Yeasts by Adhesion,” Colloids and Surfaces B: Biointerfaces, Vol. 84, No. 2, 2011, pp. 491-497.
[28] P. K. Sharma and H. K. Rao, “Analysis of Different Approaches for Evaluation of Surface Energy of Microbial Cells by Contact Angle Goniometry,” Advances in Colloid and Interface Science, Vol. 98, No. 3, 2002, pp. 341-463. http://dx.doi.org/10.1016/S0001-8686(02)00004-0
[29] C. J. Oss, “Hydrophobicity of Biosurfaces—Origin, Quantitative Determination and Interaction Energies,” Colloids and Surfaces B: Biointerfaces, Vol. 5, No. 3-4, 1995, pp. 91-110. http://dx.doi.org/10.1016/0927-7765(95)01217-7
[30] M. N. Bellon-Fontaine, J. Rault and C. J. van Oss, “Microbial Adhesion to Solvents: A Novel Method to Determine the Electron-Donor/Electron-Acceptor or Lewis Acid-Base Properties of Microbial Cells,” Colloids and Surfaces B: Biointerfaces, Vol. 7, No. 1-2, 1996, pp. 47-53. http://dx.doi.org/10.1016/0927-7765(96)01272-6
[31] X. Yang, H. Beyenal, G. Harkin and Z. Lewandowski, “Quantifying Biofilm Structure Using Image Analysis,” Journal of Microbiological Methods, Vol. 39, No. 2, 2000, pp. 109-119.
[32] H. Beyenal, C. Donovan, Z. Lewandowski and G. Harkin, “Three-Dimensional Biofilm Structure Quantification,” Journal of Microbiological Methods, Vol. 59, No. 3, 2004, pp. 395-413.
[33] Z. Lewandowski and H. Beyenal, “Fundamentals of Biofilm Research,” CRC Press, Boca Raton, 2007.
[34] P. G. Rouxhet, N. Mozes, P. B. Dengis, Y. F. Dufrêne, P. A. Gerin and M. J. Genet, “Application of X-Ray Photoelectron Spectroscopy to Microorganisms,” Colloids and Surfaces B: Biointerfaces, Vol. 2, No. 1-3, 1994, pp. 347-369. http://dx.doi.org/10.1016/0927-7765(94)80049-9
[35] S. F. Osman, W. F. Fett, P. Irwin, P. Cescutti, J. N. Brouillette and J. V. O’Connor, “The Structure of the Exopolysaccharide of Pseudomonas fluorescens Strain H13,” Carbohydrate Research, Vol. 300, No. 4, 1997, pp. 323-327.
[36] C. C. Hung, P. H. Santschi and J. B. Gillow, “Isolation and Characterization of Extracellular Polysaccharides Produced by Pseudomonas fluorescens Biovar II,” Carbohydrate Polymers, Vol. 61, No. 2, 2005, pp. 141-147.
[37] K. A. Noghabi, H. S. Zahiri and S. C. Yoon, “The Production of a Cold-Induced Extracellular Biopolymer by Pseudomonas fluorescens BM07 under Various Growth Conditions and Its Role in Heavy Metals Absorption,” Process Biochemistry, Vol. 42, No. 5, 2007, pp. 847-855.
[38] T. K. Jana, A. K. Srivastava, K. Csery and D. K. Arora, “Influence of Growth and Environmental Conditions on Cell Surface Hydrophobicity of Pseudomonas fluorescens in Non-Specific Adhesion,” Canadian Journal of Microbiology, Vol. 46, No. 1, 2000, pp. 28-37.
[39] R. Bos, H. C. van der Mei and H. J. Busscher, “Physico-Chemistry of Initial Microbial Adhesive Interactions—Its Mechanisms and Methods for Study,” FEMS Microbiology Reviews, Vol. 23, No. 2, 1999, pp. 179-230.
[40] C. J. Oss, “Long-Range and Short-Range Mechanisms of Hydrophobic Attraction and Hydrophilic Repulsion in Specific and Aspecific Interactions,” Journal of Molecular Recognition, Vol. 16, No. 4, 2003, pp. 177-190.
[41] M. C. M. Loosdrecht, J. J. Heijnen, H. Eberl, J. Kreft and C. Picioreanu, “Mathematical Modelling of Biofilm Structures,” Antonie van Leeuwenhoek, Vol. 81, No. 1-4, 2002, pp. 245-256. http://dx.doi.org/10.1023/A:1020527020464
[42] G. Jackson, H. Beyenal, W. M. Rees and Z. Lewandowski, “Growing Reproducible Biofilms with Respect to Structure and Viable Cell Counts,” Journal of Microbiological Methods, Vol. 47, No. 1, 2001, pp. 1-10.
[43] Y. Liu and J.-H. Tay, “The Essential Role of Hydrodynamic Shear Force in the Formation of Biofilm and Granular Sludge,” Journal of Microbiological Methods, Vol. 36, No. 7, 2002, pp. 1653-1665.
[44] Y. Lu, Y. H. Zhang and L. R. Lynd, “Enzyme-Microbe Synergy during Cellulose Hydrolysis by Clostridium thermocellum,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 103, No. 44, 2006, pp. 16165-16169.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.