Cognitive assessment in Alzheimer’s disease (Short Communications)


Cognitive assessment in Alzheimer’s disease

Share and Cite:

Parra, M. (2013) Cognitive assessment in Alzheimer’s disease. Advances in Alzheimer's Disease, 2, 123-125. doi: 10.4236/aad.2013.24016.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Callaway, E. (2012) Alzheimer’s drugs take a new tack. Nature, 489, 13-14.
[2] Reiman, E.M., Langbaum, J.B., Fleisher, A.S., Caselli, R.J., Chen, K., Ayutyanont, N., et al. (2011) Alzheimer’s prevention initiative: A plan to accelerate the evaluation of presymptomatic treatments. Journal of Alzheimer’s Disease, 26, 321-329.
[3] Quiroz, Y.T., Lopera, F. and Budson, A.E. (2011) Charting the path for early diagnosis and prevention of Alzheimer’s disease. Expert Review of Neurotherapeutics, 11, 1665-1667.
[4] Reiman, E.M., Langbaum, J.B. and Tariot, P.N. (2010) Alzheimer’s prevention initiative: A proposal to evaluate presymptomatic treatments as quickly as possible. Biomarkers in Medicine, 4, 3-14.
[5] Rachakonda, V., Pan, T.H. and Le, W.D. (2004) Biomarkers of neurodegenerative disorders: How good are they? Cell Research, 14, 347-358.
[6] Sunderland, T., Gur, R.E. and Arnold, S.E. (2005) The use of biomarkers in the elderly: Current and future challenges. Biological Psychiatry, 58, 272-276.
[7] Haw, L.M., Korecka, M., Clark, C.M., Lee, V.M.Y. and Trojanowski, J.Q. (2007) Biomarkers of neurodegeneration for diagnosis and monitoring therapeutics. Nature Reviews Drug Discovery, 6, 295-303.
[8] Bates, J. (2009) Alzheimer’s disease biomarkers: Advances in biomarker discovery. BioPharm Reports, Technology and Markets Ltd, Lincolnshire.
[9] Price, J.L., Davis, P.B., Morris, J.C. and White, D.L. (1991) The distribution of tangles, plaques and related immuno-histochemical markers in healthy aging and Alzheimer’s disease. Neurobiology of Aging, 12, 295-312.
[10] Chetelat, G., Villemagne, V.L., Bourgeat, P., Pike, K.E., Jones, G., Ames, D., et al. (2010) Relationship between atrophy and betaamyloid deposition in Alzheimer disease. Annals of Neurology, 67, 317-324.
[11] Serrano-Pozo, A., Frosch, M.P., Masliah, E. and Hyman, B.T. (2011) Neuropathological alterations in Alzheimer disease. Cold Spring Harbor Perspectives in Medicine, 1, Article ID: a006189.
[12] Braak, H. and Braak, E. (1991) Neuropathological stageing of Alzheimer-related changes. Acta Neuropathologica, 82, 239-259.
[13] Sperling, R.A., Aisen, P.S., Beckett, L.A., Bennett, D.A., Craft, S., Fagan, A.M., et al. (2011) Toward defining the preclinical stages of Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia, 7, 280-292.
[14] Didic, M., Barbeau, E.J., Felician, O., Tramoni, E., Guedj, E., Poncet, M., et al. (2011) Which memory system is impaired first in Alzheimer’s disease? Journal of Alzheimer’s Disease, 27, 11-22.
[15] Wolk, D.A., Mancuso, L., Kliot, D., Arnold, S.E. and Dickerson, B.C. (2013) Familiarity-based memory as an early cognitive marker of preclinical and prodromal AD. Neuropsychologia, 51, 1094-1102.
[16] deToledo-Morrell, L., Stoub, T.R., Bulgakova, M., Wilson, R.S., Bennett, D.A., Leurgans, S., et al. (2004) MRI-derived entorhinal volume is a good predictor of conversion from MCI to AD. Neurobiology of Aging, 25, 1197-1203.
[17] Gomez-Isla, T., Price, J.L., McKeel Jr., D.W., Morris, J.C., Growdon, J.H. and Hyman, B.T. (1996) Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer’s disease. The Journal of Neuroscience, 16, 4491-4500.
[18] De Toledo-Morrell, L., Goncharova, I., Dickerson, B., Wilson, R.S. and Bennett, D.A. (2000) From healthy aging to early Alzheimer’s disease: In vivo detection of entorhinal cortex atrophy. Annals of the New York Academy of Sciences, 911, 240-253.
[19] Dickerson, B.C., Goncharova, I., Sullivan, M.P., Forchetti, C., Wilson, R.S., Bennett, D.A., et al. (2001) MRI-derived entorhinal and hippocampal atrophy in incipient and very mild Alzheimer’s disease. Neurobiology of Aging, 22, 747-754.
[20] Pennanen, C., Kivipelto, M., Tuomainen, S., Hartikainen, P., Hanninen, T., Laakso, M.P., et al. (2004) Hippocampus and entorhinal cortex in mild cognitive impairment and early AD. Neurobiology of Aging, 25, 303-310.
[21] Kurylo, D.D., Corkin, S., Rizzo III, J.F. and Growdon, J.H. (1996) Greater relative impairment of object recognition than of visuospatial abilities in Alzheimer’s disease. Neuropsychology, 10, 74-81.
[22] Juottonen, K., Laakso, M.P., Insausti, R., Lehtovirta, M., Pitkanen, A., Partanen, K., et al. (1998) Volumes of the entorhinal and perirhinal cortices in Alzheimer’s disease. Neurobiol Aging, 19, 15-22.
[23] Insausti, R., Juottonen, K., Soininen, H., Insausti, A.M., Partanen, K., Vainio, P., et al. (1998) MR volumetric analysis of the human entorhinal, perirhinal, and temporopolar cortices. American Journal of Neuroradiology, 19, 659-671.
[24] Grady, C.L. and Craik, F.I. (2000) Changes in memory processing with age. Current Opinion in Neurobiology, 10, 224-231.
[25] Grady, C.L. (1998) Brain imaging and age-related changes in cognition. Experimental Gerontology, 33, 661-673.
[26] Parra, M.A., Abrahams, S., Logie, R. and Della Sala, S. (2009) Age and binding within-dimension features in visual short term memory. Neuroscience Letters, 449, 1-5.
[27] Brockmole, J.R., Parra, M.A., Della Sala, S. and Logie, R. (2008) Do binding deficits account for age-related decline in visual working memory? Psychonomic Bulletin & Review, 15, 543-547.
[28] Parra, M.A., Abrahams, S., Logie, R.H., Mendez, L.G., Lopera, F. and Della Sala, S. (2010) Visual short-term memory binding deficits in familial Alzheimer’s disease. Brain, 133, 2702-2713.
[29] Parra, M.A., Abrahams, S., Fabi, K., Logie, R., Luzzi, S. and Della, S.S. (2009) Short-term memory binding deficits in Alzheimer’s disease. Brain, 132, 1057-1066.
[30] Parra, M.A., Della Sala, S., Abrahams, S., Logie, R.H., Mendez, L.G. and Lopera, F. (2011) Specific deficit of colour-colour short-term memory binding in sporadic and familial Alzheimer’s disease. Neuropsychologia, 49, 1943-1952.
[31] Della Sala, S., Parra, M.A., Fabi, K., Luzzi, S. and Abrahams, S. (2012) Short-term memory binding is impaired in AD but not in non-AD dementias. Neuropsychologia, 50, 833-840.
[32] Parra, M.A., Abrahams, S., Logie, R.H. and Della Sala, S. (2010) Visual short-term memory binding in Alzheimer’s disease and depression. Journal of Neurology, 257, 1160-1169.
[33] Parra, M.A., Della Sala, S., Logie, R.H. and Morcom, A. M. (2013) Neural correlates of shape-color binding in visual working memory. Neuropsychologia.
[34] Lopera, F., Ardilla, A., Martinez, A., Madrigal, L., Aran- go-Viana, J.C., Lemere, C.A., et al. (1997) Clinical features of early-onset Alzheimer disease in a large kindred with an E280A presenilin-1 mutation. JAMA, 277, 793-799.
[35] Reiman, E.M., Quiroz, Y.T., Fleisher, A.S., Chen, K., Velez-Pardo, C., Jimenez-Del-Rio, M., et al. (2012) Brain imaging and fluid biomarker analysis in young adults at genetic risk for autosomal dominant Alzheimer’s disease in the presenilin 1 E280A kindred: A case-control study. The Lancet Neurology, 11, 1048-1056.
[36] Fleisher, A.S., Chen, K., Quiroz, Y.T., Jakimovich, L.J., Gomez, M.G., Langois, C.M., et al. (2012) Florbetapir PET analysis of amyloid-beta deposition in the presenilin 1 E280A autosomal dominant Alzheimer’s disease kindred: A cross-sectional study. The Lancet Neurology, 11, 1057-1065.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.