Single Molecule Applications of Quantum Dots
Thomas E. Rasmussen, Liselotte Jauffred, Jonathan Brewer, Stefan Vogel, Esben R. Torbensen, B. Christoffer Lagerholm, Lene Oddershede, Eva C. Arnspang
1Departments of Physics, Chemistry, Pharmacy, Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark 2National Institutes of Health, Bethesda, USA 3Department of Molecular Biology and Genetics and Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark.
1Departments of Physics, Chemistry, Pharmacy, Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark 2Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
Departments of Physics, Chemistry, Pharmacy, Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark.
Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.
DOI: 10.4236/jmp.2013.411A2002   PDF    HTML     4,933 Downloads   8,121 Views   Citations

Abstract

Fluorescent nanocrystals composed of semiconductor materials were first introduced for biological applications in the late 1990s. The focus of this review is to give a brief survey of biological applications of quantum dots (QDs) at the single QD sensitivity level. These are described as follows: 1) QD blinking and bleaching statistics, 2) the use of QDs in high speed single particle tracking with a special focus on how to design the biofunctional coatings of QDs which enable specific targeting to single proteins or lipids of interest, 3) a hybrid lipid-DNA analogue binding QDs which allows for tracking single lipids in lipid bilayers, 4) two-photon fluorescence correlation spectroscopy of QDs and 5) optical trapping and excitation of single QDs. In all of these applications, the focus is on the single particle sensitivity level of QDs. The high applicability of QDs in live cell imaging experiments held together with the prospects in localization microscopy and single molecule manipulation experiments gave QDs a promising future in single molecule research.

Share and Cite:

T. Rasmussen, L. Jauffred, J. Brewer, S. Vogel, E. Torbensen, B. Lagerholm, L. Oddershede and E. Arnspang, "Single Molecule Applications of Quantum Dots," Journal of Modern Physics, Vol. 4 No. 11B, 2013, pp. 27-42. doi: 10.4236/jmp.2013.411A2002.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. Bruchez, et al., Science, Vol. 281, 1998, pp. 2013-2016. http://dx.doi.org/10.1126/science.281.5385.2013
[2] X. Gao, et al., Current Opinion in Biotechnology, Vol. 16, 2005, pp. 63-72.
http://dx.doi.org/10.1016/j.copbio.2004.11.003
[3] B. O. Dabbousi, et al., The Journal of Physical Chemistry B, Vol. 101, 1997, pp. 9463-9475.
http://dx.doi.org/10.1021/jp971091y
[4] M. A. Hines and P. Guyot-Sionnest, The Journal of Physical Chemistry, Vol. 100, 1996, pp. 468-471.
http://dx.doi.org/10.1021/jp9530562
[5] T. Kippeny, L. A. Swafford and S. J. Rosenthal, Journal of Chemical Education, Vol. 79, 2002, pp. 1094-1100.
http://dx.doi.org/10.1021/ed079p1094
[6] Z. Deng, et al., Journal of the American Chemical Society, Vol. 134, 2012, pp. 17424-17427.
http://dx.doi.org/10.1021/ja3081023
[7] B. C. Lagerholm, et al., Biophysical Journal, Vol. 91, 2006, pp. 3050-3060.
http://dx.doi.org/10.1529/biophysj.105.079178
[8] S. F. Lee and M. A. Osborne, ChemPhyschem, Vol. 10, 2009, pp. 2174-2191.
http://dx.doi.org/10.1002/cphc.200900200
[9] S. Hohng and T. Ha, Journal of the American Chemical Society, Vol. 126, 2004, pp. 1324-1325.
http://dx.doi.org/10.1021/ja039686w
[10] W. E. Moerner and M. Orrit, Science, Vol. 283, 1999, pp. 1670-1676.
http://dx.doi.org/10.1126/science.283.5408.1670
[11] M. Nirmal, et al., Nature, Vol. 383, 1996, pp. 802-804.
http://dx.doi.org/10.1038/383802a0
[12] N. Durisic, et al., ACS Nano, Vol. 3, 2009, pp. 1167-1175.
http://dx.doi.org/10.1021/nn800684z
[13] N. Durisic, et al., Biophysical Journal, Vol. 93, 2007, pp. 1338-1346.
http://dx.doi.org/10.1529/biophysj.107.106864
[14] X. Wang, et al., Nature, Vol. 459, 2009, pp. 686-689.
http://dx.doi.org/10.1038/nature08072
[15] A. Biebricher, M. Sauer and P. Tinnefeld, The Journal of Physical Chemistry B, Vol. 110, 2006, pp. 5174-5178.
http://dx.doi.org/10.1021/jp060660b
[16] V. Fomenko and D. J. Nesbitt, Nano Letters, Vol. 8, 2008, pp. 287-293. http://dx.doi.org/10.1021/nl0726609
[17] Y. Chen, et al., Journal of the American Chemical Society, Vol. 130, 2008, pp. 5026-5027.
http://dx.doi.org/10.1021/ja711379k
[18] B. Mahler, et al., Nature Materials, Vol. 7, 2008, pp. 659-664. http://dx.doi.org/10.1038/nmat2222
[19] M. Nirmal, et al., Physical Review Letters, Vol. 75, 1995, pp. 3728-3731.
http://dx.doi.org/10.1103/PhysRevLett.75.3728
[20] K. T. Shimizu, et al., Physical Review B, Vol. 6320, 2001, Article ID: 205316.
[21] P. A. Frantsuzov and R. A. Marcus, Physical Review B, Vol. 72, 2005, Article ID: 155321.
http://dx.doi.org/10.1103/PhysRevB.72.155321
[22] X. Brokmann, et al., Physical Review Letters, Vol. 90, 2003, Article ID: 120601.
http://dx.doi.org/10.1103/PhysRevLett.90.120601
[23] M. Kuno, et al., Journal of Chemical Physics, Vol. 115, 2001, pp. 1028-1040.
http://dx.doi.org/10.1063/1.1377883
[24] M. Kuno, et al., The Journal of Chemical Physics, Vol. 112, 2000, pp. 3117-3120.
http://dx.doi.org/10.1063/1.480896
[25] L. Wang, The Journal of Physical Chemistry B, Vol. 105, 2001, pp. 2360-2364.
http://dx.doi.org/10.1021/jp0032053
[26] A. L. Efros and M. Rosen, Physical Review Letters, Vol. 78, 1997, pp. 1110-1113.
http://dx.doi.org/10.1103/PhysRevLett.78.1110
[27] S. F. Lee and M. A. Osborne, Journal of the American Chemical Society, Vol. 129, 2007, pp. 8936-8937.
http://dx.doi.org/10.1021/ja071876+
[28] W. G. J. H. M. van Sark, et al., The Journal of Physical Chemistry B, Vol. 105, 2001, pp. 8281-8284.
http://dx.doi.org/10.1021/jp012018h
[29] H. Chen, H. Gai and E. S. Yeung, Chemical Communications, No. 13, 2009, pp. 1676-1678.
http://dx.doi.org/10.1039/b819356h
[30] J. E. B. Katari, V. L. Colvin and A. P. Alivisatos, The Journal of Physical Chemistry, Vol. 98, 1994, pp. 4109-4117. http://dx.doi.org/10.1021/j100066a034
[31] P. Hoyer, et al., Nano Letters, Vol. 11, 2011, pp. 245-250.
http://dx.doi.org/10.1021/nl103639f
[32] E. A. Christensen, P. Kulatunga and B. C. Lagerholm, PLoS One, Vol. 7, 2012, Article ID: e44355.
http://dx.doi.org/10.1371/journal.pone.0044355
[33] Y. Xing, Z. Xia and J. Rao, IEEE Transactions on Nano-Bioscience, Vol. 8, 2009, pp. 4-12.
http://dx.doi.org/10.1109/TNB.2009.2017321
[34] X. Michalet, et al., Science, Vol. 307, 2005, pp. 538-544.
http://dx.doi.org/10.1126/science.1104274
[35] T. Pons and H. Mattoussi, Annals of Biomedical Engineering, Vol. 37, 2009, pp. 1934-1959.
http://dx.doi.org/10.1007/s10439-009-9715-0
[36] M. Bruchez Jr., M. Moronne, P. Gin, S. Weiss and A. P. Alivisatos, Science, Vol. 281, 1998, pp. 2013-2016.
http://dx.doi.org/10.1126/science.281.5385.2013
[37] B. Dubertret, P. Skourides, D. J. Norris, V. Noireaux, A. H. Brivanlou and A. Libchaber, Science, Vol. 298, 2002, pp. 1759-1762.
http://dx.doi.org/10.1126/science.1077194
[38] X. Y. Wu, H. J. Liu, J. Q. Liu, K. N. Haley, J. A. Treadway, J P. Larson, N. F. Ge, F. Peale and M. P. Bruchez, Nature Biotechnology, Vol. 21, 2002, pp. 41-46.
http://dx.doi.org/10.1038/nbt764
[39] T. Pellegrino, L. Manna, S. Kudera, T. Liedl, D. Koktysh, A. L. Rogach, S. Keller, J. Radler, G. Natile and W. J. Parak, Nano Letters, Vol. 4, 2004, pp. 703-707.
http://dx.doi.org/10.1021/nl035172j
[40] S. J. Rosenthal, J. C. Chang, O. Kovtun, J. R. McBride and I. D. Tomlinson, Chemistry & Biology, Vol. 18, 2011, pp. 10-24.
http://dx.doi.org/10.1016/j.chembiol.2010.11.013
[41] G. T. Hermanson, “Bioconjugate Techniques,” Academic Press, San Diego, 1996.
[42] I. L. Medintz, H. T. Uyeda, E. R. Goldman and H. Mattoussi, Nature Materials, Vol. 4, 2005, pp. 435-446.
http://dx.doi.org/10.1038/nmat1390
[43] S. K. Chakraborty, J. A. J. Fitzpatrick, J. A. Phillippi, S. Andreko, A. S. Waggoner, M. P. Bruchez and B. Ballou, Nano Letters, Vol. 7, 2007, pp. 2618-2626.
http://dx.doi.org/10.1021/nl0709930
[44] S. Pathak, M. C. Davidson and G. A. Silva, Nano Letters, Vol. 7, 2007, pp. 1839-1345.
http://dx.doi.org/10.1021/nl062706i
[45] T. Jamieson, R. Bakhshia, D. Petrovaa, R. Pococka, M. Iman and A. M. Seifalian, Biomaterials, Vol. 28, 2007, pp. 4717-4732.
http://dx.doi.org/10.1016/j.biomaterials.2007.07.014
[46] E. L. Bentzen, I. D. Tomlinson, J. Mason, P. Gresch, M. R. Warnement, D. Wright, E. Sanders-Bush, R. Blakely and S. J. Rosenthal, Bioconjugate Chemistry, Vol. 16, 2005, pp. 1488-1494.
http://dx.doi.org/10.1021/bc0502006
[47] W. R. Algar, A. J. Tavares and U. J. Krull, Analytica Chimica Acta, Vol. 673, 2010, pp. 1-25.
http://dx.doi.org/10.1016/j.aca.2010.05.026
[48] D. Alcor, G. Gouzer and A. Triller, European Journal of Neuroscience, Vol. 30, 2009, pp. 987-997.
http://dx.doi.org/10.1111/j.1460-9568.2009.06927.x
[49] M. J. Saxton and K. Jacobson, Annual Review of Biophysics and Biomolecular Structure, Vol. 26, 1997, pp. 373-399. http://dx.doi.org/10.1146/annurev.biophys.26.1.373
[50] C. Joo, H. Balci, Y. Ishitsuka, C. Buranachai and T. Ha, Annual Review of Biochemistry, Vol. 77, 2008, pp. 51-76.
http://dx.doi.org/10.1146/annurev.biochem.77.070606.101543
[51] M. Brameshuber and G. J. Schutz, Nature Methods, Vol. 5, 2008, pp. 133-134.
http://dx.doi.org/10.1038/nmeth0208-133
[52] M. P. Clausen and B. C. Lagerholm, Current Protein & Peptide Science, Vol. 12, 2011, pp. 699-713.
[53] F. Pinaud, S. Clarke, A. Sittner and M. Dahan, Nature Methods, Vol. 7, 2010, pp. 275-285.
http://dx.doi.org/10.1038/nmeth.1444
[54] S. Wieser and G. J. Schutz, Methods, Vol. 46, 2008, pp. 131-140. http://dx.doi.org/10.1016/j.ymeth.2008.06.010
[55] H. Bannai, S. Lévi, C. Schweizer, M. Dahan and A. Triller, Nature Protocols, Vol. 1, 2006, pp. 2628-2634.
http://dx.doi.org/10.1038/nprot.2006.429
[56] A. Serge, N. Bertaux, H. Rigneault and D. Marguet, Nature Methods, Vol. 5, 2008, pp. 687-694.
http://dx.doi.org/10.1038/nmeth.1233
[57] K. Jaqaman, D. Loerke, M. Mettlen, H. Kuwata, S. Grinstein, S. L. Schmid and G. Danuser, Nature Methods, Vol. 5, 2008, pp. 695-702.
http://dx.doi.org/10.1038/nmeth.1237
[58] I. F. Sbalzarini and P. Koumoutsakos, Journal of Structural Biology, Vol. 151, 2005, pp. 182-195.
http://dx.doi.org/10.1016/j.jsb.2005.06.002
[59] J. Adler, A. I. Shevchuk, P. Novak, Y. E. Korchev and I. Parmryd, Nature Methods, Vol. 7, 2010, pp. 170-171.
http://dx.doi.org/10.1038/nmeth0310-170
[60] A. Kusumi, Y. M. Shirai, I. Koyama-Honda, K. G. N. Suzuki and T. K. Fujiwara, FEBS Letters, Vol. 584, 2010, pp. 1814-1823.
http://dx.doi.org/10.1016/j.febslet.2010.02.047
[61] D. Lingwood and K. Simons, Science, Vol. 327, 2010, pp. 46-50. http://dx.doi.org/10.1126/science.1174621
[62] P. S. Niemela, M. S. Miettinen, L. Monticelli, H. Hammaren, P. Bjelkmar, T. Murtola, E. Lindahl and I. Vattulainen, Journal of the American Chemical Society, Vol. 132, 2010, pp. 7574-7575.
http://dx.doi.org/10.1021/ja101481b
[63] M. Dahan, S. Lévi, C. Luccardini, P. Rostaing, B. Riveau and A. Triller, Science, Vol. 302, 2003, pp. 442-445.
http://dx.doi.org/10.1126/science.1088525
[64] N. L. Andrews, K. A. Lidke, J. R. Pfeiffer, A. R. Burns, B. S. Wilson, J. M. Oliver and D. S. Lidke, Nature Cell Biology, Vol. 10, 2008, pp. 955-963.
http://dx.doi.org/10.1038/ncb1755
[65] R. Frischknecht, M. Heine, D. Perrais, C. I. Seidenbecher, D. Choquet and E. D. Gundelfinger, Nature Neuroscience, Vol. 12, 2009, pp. 897-904.
http://dx.doi.org/10.1038/nn.2338
[66] F. Pinaud, X. Michalet, G. Iyer, E. Margeat, H.-P. Moore and S. Weiss, Traffic, Vol. 10, 2009, pp. 691-712.
http://dx.doi.org/10.1111/j.1600-0854.2009.00902.x
[67] I. R. Bates, B. Hébert, Y. S. Luo, J. Liao, A. I. Bachir, D. L. Kolin, P. W. Wiseman and J. W. Hanrahan, Biophysical Journal, Vol. 91, 2006, pp. 1046-1058.
http://dx.doi.org/10.1529/biophysj.106.084830
[68] A. Triller and D. Choquet, Neuron, Vol. 59, 2008, pp. 359-374. http://dx.doi.org/10.1016/j.neuron.2008.06.022
[69] C. Bouzigues, M. Morel, A. Triller and M. Dahan, Proceedings of the National Academy of Sciences of the United States of America, Vol. 104, 2007, pp. 11251-11256.
http://dx.doi.org/10.1073/pnas.0702536104
[70] M. Heine, L. Groc, R. Frischknecht, J.-C. Béique, B. Lounis, G. Rumbaugh, R. L. Huganir, L. Cognet and D. Choquet, Science, Vol. 320, 2008, pp. 201-205.
http://dx.doi.org/10.1126/science.1152089
[71] D. S. Lidke, K. A. Lidke, B. Rieger, T. M. Jovin and D. J. Arndt-Jovin, Journal of Cell Biology, Vol. 170, 2005, pp. 619-626. http://dx.doi.org/10.1083/jcb.200503140
[72] D. S. Lidke, P. Nagy, R. Heintzmann, D. J. Arndt-Jovin, J. N. Post, H. E. Grecco, E. A. Jares-Erijman and T. M. Jovin, Nature Biotechnology, Vol. 22, 2004, pp. 198-203.
http://dx.doi.org/10.1038/nbt929
[73] S. T. Low-Nam, K. A. Lidke, P. J. Cutler, R. C. Roovers, P. M. van Bergen en Henegouwen, B. S. Wilson and D. S. Lidke, Nature Structural and Molecular Biology, Vol. 18, 2011, pp. 1244-1249.
http://dx.doi.org/10.1038/nsmb.2135
[74] C. J. You, S. Wilmes, O. Beutel, S. Lochte, Y. Podoplelowa, F. Roder, C. Richter, T. Seine, D. Schaible, G. Uzé, S. Clarke, F. Pinaud, M. Dahan and J. Piehler, Angewandte Chemie International Edition, Vol. 49, 2010, pp. 4108-4112. http://dx.doi.org/10.1002/anie.200907032
[75] N. L. Andrews, J. R. Pfeiffer, A. M. Martinez, D. M. Haaland, R. W. Davis, T. Kawakami, J. M. Oliver, B. S. Wilson and D. S. Lidke, Immunity, Vol. 31, 2009, pp. 469-479. http://dx.doi.org/10.1016/j.immuni.2009.06.026
[76] E. C. Arnspang, J. R. Brewer and B. C. Lagerholm, PLoS ONE, Vol. 7, 2012, Article ID: e48521.
http://dx.doi.org/10.1371/journal.pone.0048521
[77] M. P. Clausen and B. C. Lagerholm, Nano Letters, Vol. 13, 2013, pp. 2332-2337.
http://dx.doi.org/10.1021/nl303151f
[78] K. Rohr and S. Vogel, Chembiochem: A European Journal of Chemical Biology, Vol. 7, 2006, pp. 463-470.
http://dx.doi.org/10.1002/cbic.200500392
[79] A. C. Simonsen and L. A. Bagatolli, Langmuir: The ACS Journal of Surfaces and Colloids, Vol. 20, 2004, pp. 9720-9728. http://dx.doi.org/10.1021/la048683+
[80] K. Braeckmans, K. Remaut, R. E. Vandenbroucke, B. Lucas, S. C. De Smedt and J. Demeester, Biophysical Journal, Vol. 92, 2007, pp. 2172-2183.
http://dx.doi.org/10.1529/biophysj.106.099838
[81] D. Magde, W. W. Webb and E. Elson, Physical Review Letters, Vol. 29, 1972, pp. 705-708.
http://dx.doi.org/10.1103/PhysRevLett.29.705
[82] E. L. Elson, Journal of Biomedical Optics, Vol. 9, 2004, pp. 857-864. http://dx.doi.org/10.1117/1.1779234
[83] K. M. Berland, P. T. C. So and E. Gratton, Biophysical Journal, Vol. 68, 1995, pp. 694-701.
http://dx.doi.org/10.1016/S0006-3495(95)80230-4
[84] E. Haustein and P. Schwille, Annual Review of Biophysics and Biomolecular Structure, Vol. 36, 2007, pp. 151-169.
http://dx.doi.org/10.1146/annurev.biophys.36.040306.132612
[85] P. Schwille, U. Haupts, S. Maiti and W. W. Webb, Biophysical Journal, Vol. 77, 1999, pp. 2251-2265.
http://dx.doi.org/10.1016/S0006-3495(99)77065-7
[86] E. Haustein and P. Schwille, Current Opinion in Structural Biology, Vol. 14, 2004, pp. 531-540.
http://dx.doi.org/10.1016/j.sbi.2004.09.004
[87] A. Einstein, Annalen der Physik, Vol. 322, 1905, pp. 549-560. http://dx.doi.org/10.1002/andp.19053220806
[88] J. Brewer, J. B. de la Serna, K. Wagner and L. A. Bagatolli, Biochimica et Biophysica Acta, Vol. 1798, 2010, pp. 1301-1308.
http://dx.doi.org/10.1016/j.bbamem.2010.02.024
[89] A. I. Bachir, N. Durisic, B. Hebert, P. Grütter and P. W. Wiseman, Journal of Applied Physics, Vol. 99, 2006, Article ID: 064503. http://dx.doi.org/10.1063/1.2175470
[90] L. Jauffred and L. B. Oddershede, Nano Letters, Vol. 10, 2010, pp. 1927-1930.
http://dx.doi.org/10.1021/nl100924z
[91] L. Jauffred, A. C. Richardson and L. B. Oddershede, Nano letters, Vol. 8, 2008, pp. 3376-3380.
http://dx.doi.org/10.1021/nl801962f
[92] M. Schmidt, S. A. Blanton, M. A. Hines and P. Guyot-Sionnest,. Physical Review B, Vol. 53, 1996, pp. 12629-12632. http://dx.doi.org/10.1103/PhysRevB.53.12629
[93] S. A. Blanton, A. Dehestani, P. C. Lin and P. Guyot-Sionnest, Chemical Physics Letters, Vol. 229, 1994, pp. 317-322. http://dx.doi.org/10.1016/0009-2614(94)01057-9
[94] T. Wang, J. Y. Chen, S. Zhen, P. N. Wang, C. C. Wang, W. L. Yang and Q. Peng, Journal of Fluorescence, Vol. 19, 2009, pp. 615-621.
http://dx.doi.org/10.1007/s10895-008-0452-9
[95] L. Pan, A. Ishikawa and N. Tamai, Physical Review B, Vol. 75, 2007, p. 161305.
http://dx.doi.org/10.1103/PhysRevB.75.161305
[96] S. C. Pu, M. J. Yang, C.-C. Hsu, C.-W. Lai, C.-C. Hsieh, S. H. Lin, Y. M. Cheng and P. T. Chou, Small, Vol. 2, 2006, pp. 1308-1313.
http://dx.doi.org/10.1002/smll.200600157
[97] D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise and W. W. Webb, Science, Vol. 300, 2003, pp. 1434-1436.
http://dx.doi.org/10.1126/science.1083780
[98] L. Jauffred and L. B. Oddershede, Nano Letters, Vol. 10, 2010, pp. 1927-1930.
http://dx.doi.org/10.1021/nl100924z
[99] L. Jauffred, M. Sletmoen, F. Czerwinski and L. Oddershede, Quantum dots as handles for optical manipulation. arXiv.org, 2010. physics.optics.
[100] F. Hajizadeh and S. N. S. Reihani, Optics Express, Vol. 18, 2010, pp. 551-559.
http://dx.doi.org/10.1364/OE.18.000551
[101] C. Selhuber-Unkel, I. Zins, O. Schubert and C. Sonnichsen, Nano letters, Vol. 8, 2008, pp. 2998-3003.
http://dx.doi.org/10.1021/nl802053h
[102] L. Bosanac, T. Aabo, P. M. Bendix and L. B. Oddershede, Nano letters, Vol. 8, 2008, pp. 1486-1491.
http://dx.doi.org/10.1021/nl080490+
[103] P. M. Hansen, V. K. Bhatia, N. Harrit and L. Oddershede, Nano letters, Vol. 5, 2005, pp. 1937-1942.
http://dx.doi.org/10.1021/nl051289r
[104] K. Svoboda and S. M. Block, Optics Letters, Vol. 19, 1994, pp. 930-932.
http://dx.doi.org/10.1364/OL.19.000930
[105] M. Dienerowitz, M. Mazilu and K. Dholakia, Journal of Nanophotonics, Vol. 2, 2008, Article ID: 021875.
http://dx.doi.org/10.1117/1.2992045
[106] M. Padgett and R. Bowman, Nature Photonics, Vol. 5, 2011, pp. 343-348.
http://dx.doi.org/10.1038/nphoton.2011.81
[107] K. Dholakia and T. Cizmár, Nature Photonics, Vol. 5, 2011, pp. 335-342.
http://dx.doi.org/10.1038/nphoton.2011.80
[108] C. R. Head, E. Kammann, M. Zanella, L. Mannabc and P. G. Lagoudakis, Nanoscale, Vol. 4, 2012, pp. 3693-3697. http://dx.doi.org/10.1039/c2nr30515a
[109] K. Lidke, B. Rieger, T. Jovin and R. Heintzmann, Optics Express, Vol. 13, 2005, pp. 7052-7062.
http://dx.doi.org/10.1364/OPEX.13.007052
[110] P. Pierobon, S. Achouri, S. Courty, A. R. Dunn, J. A. Spudich, M. Dahan and G. Cappello, Biophysical Journal, Vol. 96, 2009, pp. 4268-4275.
http://dx.doi.org/10.1016/j.bpj.2009.02.045
[111] C. Kural, H. Kim, S. Syed, G. Goshima, V. I. Gelfand and P. R. Selvin, Science, Vol. 308, 2005, pp. 1469-1472.
http://dx.doi.org/10.1126/science.1108408
[112] L. B. Oddershede, Nature Chemical Biology, Vol. 8, 2012, pp. 879-886. http://dx.doi.org/10.1038/nchembio.1082
[113] A. Biebricher, W. Wende, C. Escudé, A. Pingoud and P. Desbiolles, Biophysical Journal, Vol. 96, 2009, pp. L50-L52. http://dx.doi.org/10.1016/j.bpj.2009.01.035
[114] Y. Ebenstein, N. Gassman, S. Kim, J. Antelman, Y. Kim, S. Ho, R. Samuel, X. Michalet and S. Weiss, Nano Letters, Vol. 9, 2009, pp. 1598-1603.
http://dx.doi.org/10.1021/nl803820b
[115] I. J. Finkelstein, M. L. Visnapuu and E. C. Greene, Nature, Vol. 468, 2010, pp. 983-987.
http://dx.doi.org/10.1038/nature09561
[116] A. Seitz and T. Surrey, The EMBO Journal, Vol. 25, 2006, pp. 267-277.
http://dx.doi.org/10.1038/sj.emboj.7600937
[117] D. M. Warshaw, G. G. Kennedy, S. S. Work, E. B. Krementsova, S. Beck and K. M. Trybus, Biophysical Journal, Vol. 88, 2005, pp. L30-L32.
http://dx.doi.org/10.1529/biophysj.105.061903
[118] M. Eriksen, P. Horvath, M. A. Sørensen, S. Semsey, L. B. Oddershede and L. Jauffred, Journal of Nanomaterials, Vol. 2013, 2013, Article ID: 468105.
http://dx.doi.org/10.1155/2013/468105

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.