Ab Initio Molecular Orbital Calculation for Optical and Electronic Properties Evaluation of Small and Medium Size Silicon Nano-Clusters Found in Silicon Rich Oxide Films

Abstract

In systems in atomic and nano scales such as clusters or agglomerates constituted of particles from a few to less than one hundred of atoms, quantum confinement effects are very important. Their optical and electronic properties are often dependent on the size of the systems and the way in which the atoms in these clusters are bonded. Generally, these nano-structures display optical and electronic properties significantly different of those found in corresponding bulk materials. Silicon agglomerates found in Silicon Rich Oxide (SRO) films have optical properties, which have reported as depended directly on nano-crystal size. Furthermore, the room temperature photoluminescence (PL) of Silicon Rich Oxides (SRO) has repeatedly generated a huge interest due to their possible applications in optoelectronic devices. However, a plausible emission mechanism has not yet widespread acceptance of the scientific community. In this research, we employed the Density Functional Theory with a functional B3LYP and a basis set 6 - 31G* to calculate the optical and electronic properties of small (six to ten silicon atoms) and medium size clusters of silicon (constituted of eleven to fourteen silicon atoms). With the theoretical calculation of the structural and optical properties of silicon clusters, it is possible to evaluate the contribution of silicon agglomerates in the luminescent emission mechanism experimentally found in thin SRO films.

Share and Cite:

N. Torres, J. Gracia, J. López, J. García, A. Sánchez, J. Sánchez, D. Luz and F. Morales, "Ab Initio Molecular Orbital Calculation for Optical and Electronic Properties Evaluation of Small and Medium Size Silicon Nano-Clusters Found in Silicon Rich Oxide Films," Journal of Modern Physics, Vol. 4 No. 11B, 2013, pp. 1-26. doi: 10.4236/jmp.2013.411A2001.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] L. T. Canham, Applied Physics Letters, Vol. 57, p. 1046, 1990. http://dx.doi.org/10.1063/1.103561
[2] D. J. Lockwood, “Light Emission in Silicon,” In: D. J. Lockwood, Ed., Light Emission in Silicon from Physics to Devices. Semiconductors and Semimetales, Vol. 49, Academic Press, San Diego, 1998.
[3] Z. Z. Yuan, G. Pucker, A. Marconi, F. Sgrignuoli, A. Anopchenko, Y. Jestin, L. Ferrario, P. Bellutti and L. Pavesi, Solar Energy Materials and Solar Cells, Vol. 95, 2011, pp. 1224-1227.
http://dx.doi.org/10.1016/j.solmat.2010.10.035
[4] N. D. Espinosa-Torres, J. F. J. Flores-Gracia, J. A. Luna-López, A. Morales-Sánchez, Ragnar Kiebach, J. C. Ramírez-García, D. Hernández de la Luz and E. Camacho-Espinosa. “In Silico Study of Electro-Luminescence in SRO thin Films due to [Sin-On],” Will be Published.
[5] W. D. Knight, K. Clemenger, W. A. de Heer, W. A. Saunders, M. Y. Chou and M. L. Cohen, Physical Review Letters, Vol. 52, 1984, pp. 2141-2143.
http://dx.doi.org/10.1103/PhysRevLett.52.2141
[6] K. Raghavachari and C. M. Rohlfing, The Journal of Chemical Physics, Vol. 89, 1988, p. 2219.
http://dx.doi.org/10.1063/1.455065
[7] Y. H. Luo, J. J. Zhao and G. H. Wang, Physical Review B, Vol. 60, 1999, pp. 10703-10706.
http://dx.doi.org/10.1103/PhysRevB.60.10703
[8] D. E. Bergeron and A. W. Castleman Jr., The Journal of Chemical Physics, Vol. 117, 2002, p. 3219.
http://dx.doi.org/10.1063/1.1486439
[9] S. Yoo, X. C. Zeng, X. Zhu and J. Bai, Journal of American Chemical Society, Vol. 125, 2003, pp. 13316-13317.
http://dx.doi.org/10.1063/1.1690755
[10] M. V. Ramakrishna and A. Bahel, The Journal of Chemical Physics, Vol. 104, 1996, p. 9833.
http://dx.doi.org/10.1063/1.471742
[11] A. Bahel and M. V. Ramakrishna, Physical Review B, Vol. 51, 1995, pp. 13849-13851.
http://dx.doi.org/10.1103/PhysRevB.51.13849
[12] Rohlfing and K. Raghavachari, Chemical Physics Letters, Vol. 198, 1990, p. 521.
[13] C. M. Rohlfing and K. Raghavachari, Chemical Physics Letters, Vol. 198, 1992, p. 521.
[14] Z. Y. Lu, C. Z. Wang and K. M. Ho, Physical Review B, Vol. 61, 2000, pp. 2329-2334.
http://dx.doi.org/10.1103/PhysRevB.61.2329
[15] X. Zhu and X. C. Zeng, The Journal of Chemical Physics, Vol. 118, 2003, p. 3558.
http://dx.doi.org/10.1063/1.1535906
[16] K.-M. Ho, A. A. Shvartsburg, B. Pan, Z.-Y. Lu, C.-Z. Wang, J. G. Wacker, J. L. Fye and M. F. Jarrold, Nature, Vol. 392, 1998, pp. 582-585;
http://dx.doi.org/10.1038/33369
[17] B. Liu, Z.-Y. Lu, B. Pan, C.-Z. Wang, K.-M. Ho, A. A. Shvartsburg and M. F. Jarrold, The Journal of Chemical Physics, Vol. 109, 1998, p. 9401.
http://dx.doi.org/10.1063/1.477601
[18] I. Rata, A. A. Shvartsburg, M. Horoi, T. Frauenheim, K. W. M. Siu and K. A. Jackson, Physical Review Letters, Vol. 85, 2000, pp. 546-549.
http://dx.doi.org/10.1103/PhysRevLett.85.546
[19] B.-X. Li, P.-L. Cao and S.-C. Zhan, Physics Letters A, Vol. 316, 2003, pp. 252-260.
http://dx.doi.org/10.1016/S0375-9601(03)01173-3
[20] O. Guillois, N. Herlin-Boime, C. Reynaud, G. Ledoux, F. Huisken, Journal of Applied Physics, Vol. 95, 2004, p. 3677. http://dx.doi.org/10.1063/1.1652245
[21] M. Aceves-Mijares, A. A. González-Fernández, R. López-Estopier, A. Luna-López, D. Berman-Mendoza, A. Morales, C. Falcony, C. Domínguez and R. Murphy-Arteaga, Journal of Nanomaterials, Vol. 2012, 2012, Article ID: 890701. http://dx.doi.org/10.1155/2012/890701
[22] Al. L. Efros and A. L. Efros, Soviet Physics: Semiconductors, Vol. 16, 1982, p 1209.
[23] S. V. Gaponenko, “Optical Properties of Semiconductor Nanocrystals,” Cambridge University Press, Cambridge, 1998.
[24] L. E. Brus, The Journal of Chemical Physics, Vol. 80, 1984, p. 4403. http://dx.doi.org/10.1063/1.447218
[25] Y. Kayanuma, Physical Review B, Vol. 38, 1988, pp. 9797-9805. http://dx.doi.org/10.1103/PhysRevB.38.9797
[26] L. Dal Negro, M. Cazzanelli, L. Pavesi, S. Ossicini, D. Pacifici, G. Franzò, F. Priolo and F. Iacona, Applied Physics Letters, Vol. 82, 2003, pp. 4636-4638.
http://dx.doi.org/10.1063/1.1586779
[27] A. Meldrum, R. F. Haglund Jr., L. A. Boatner and C. W. White, Advanced Materials, Vol. 13, 2001, pp. 1431-1444. http://dx.doi.org/10.1002/1521-4095(200110)13:19<1431::AID-ADMA1431>3.0.CO;2-Z
[28] M. H. Nayfeh, S. Rao, N. Barry, J. Therrien, G. Belomoin, A. Smith and S. Chaieb, Applied Physics Letters, Vol. 80, 2002, pp. 121-123.
http://dx.doi.org/10.1063/1.1428622
[29] M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M. Schmidt and J. Blasing, Applied Physics Letters, Vol. 80, 2002, pp. 661-663.
http://dx.doi.org/10.1063/1.1433906
[30] J. Wang, X. F. Wang, Q. Li, A. Hryciw and A. Meldrum, Philosophical Magazine, Vol. 87, 2007, pp. 11-27.
http://dx.doi.org/10.1080/14786430600863047
[31] C. Delerue, G. Allan and M. Lannoo, Journal of Luminescence, Vol. 80, 1998, pp. 65-73.
http://dx.doi.org/10.1016/S0022-2313(98)00071-4
[32] V. A. Belyakov, V. A. Burdov, R. Lockwood and A. Meldrum, Advances in Optical Technologies, Vol. 2008, 2008, Article ID: 279502.
http://dx.doi.org/10.1155/2008/279502
[33] J. A. Luna-López, G. García-Salgado, T. Díaz-Becerril, J. Carrillo López, D.E. Vázquez-Valerdi, H. Juárez-Santiesteban, E. Rosendo-Andrés and A. Coyopol, Materials Science and Engineering B, Vol. 174, 2010, pp. 88-92.
http://dx.doi.org/10.1016/j.mseb.2010.05.005
[34] E. C. Honea, A. Ogura, C. A. Murray, K. Raghavachari, W. O. Sprenger, M. F. Jarrold and W. L. Brown, Nature, Vol. 366, 1993, pp. 42-44.
http://dx.doi.org/10.1038/366042a0
[35] X. L. Zhu, X. C. Zeng, Y. A. Lei, and B. Pan, The Journal of Chemical Physics, Vol. 120, 2004, p. 8985.
http://dx.doi.org/10.1063/1.1690755
[36] X. L. Zhu and X. C. Zeng, The Journal of Chemical Physics, Vol. 118, 2003, p. 3558.
http://dx.doi.org/10.1063/1.1535906
[37] I. H. Lee, K. J. Chang and Y. H. Lee, Journal of Physics: Condensed Matter, Vol. 6, 1994, p. 741.
http://dx.doi.org/10.1088/0953-8984/6/3/014
[38] K. M. Ho, A. A. Shvartsburg, B. Pan, Z. Y. Lu, C. Z. Wang, J. G. Wacker, J. L. Fye and M. F. Jarrold, Nature, Vol. 392, 1998, p. 582.
http://dx.doi.org/10.1038/33369
[39] A. Sieck, D. Porezag, Th. Frauenheim, M. R. Pederson, and K. Jackson, Physical Review A, Vol. 56, 1997, pp. 4890-4898.
http://dx.doi.org/10.1103/PhysRevA.56.4890
[40] I. Vasiliev, S. Ogut and J. R. Chelikowsky, Physical Review Letters, Vol. 78, 1997, pp. 4805-4808.
http://dx.doi.org/10.1103/PhysRevLett.78.4805
[41] D. J. Wales, Physical Review A, Vol. 49, 1994, pp. 2195-2198. http://dx.doi.org/10.1103/PhysRevA.49.2195
[42] C. M. Rohlfing and K. Raghavachari, Chemical Physics Letters, Vol. 167, 1990, p. 559.
http://dx.doi.org/10.1016/0009-2614(90)85469-S
[43] C. M. Rohlfing and K. Raghavachari, The Journal of Chemical Physics, Vol. 96, 1992, p. 2114.
http://dx.doi.org/10.1063/1.462062
[44] H. Jahn and E. Teller, Proceedings of the Royal Society of London Series A, Mathematical and Physical Sciences (1934-1990) , Vol. 161, 1937, pp. 220-235.
http://dx.doi.org/10.1098/rspa.1937.0142
[45] B.-L. Gu, Z.-Q. Li and J.-L. Zhu, Journal of Physics: Condensed Matter, Vol. 5, 1993, p. 5255.
http://dx.doi.org/10.1088/0953-8984/5/30/005
[46] J. C. Grossman and L. Mitas, Physical Review Letters, Vol. 74, 1995, pp. 1323-1326.
http://dx.doi.org/10.1103/PhysRevLett.74.1323
[47] B. X. Li, P. L. Cao and M. Jiang, Physica Status Solidi B, Vol. 218, 2000, pp. 399-400.
http://dx.doi.org/10.1002/1521-3951(200004)218:2<399::AID-PSSB399>3.0.CO;2-R
[48] B. X. Li and P. L. Cao, Physical Review A, Vol. 62, 2000, Article ID: 023201.
http://dx.doi.org/10.1103/PhysRevA.62.023201
[49] B. X. Li and P. L. Cao, Journal of Physics: Condensed Matter, Vol. 13, 2001, p. 1.
http://dx.doi.org/10.1088/0953-8984/13/1/301
[50] H. Haberland, “Clusters of Atoms and Molecules: Theory, Experiment, and Clusters of Atoms,” Springer, New York, 1994.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.