Prediction of Porosity and Density of Calcarenite Rocks from P-Wave Velocity Measurements

Abstract

Petrophysical proprieties such as porosity, density, permeability and saturation have a marked impact on acoustic proprieties of rocks. Hence, there has been recently a strong incentive to use new geophysical techniques to invert such properties from seismic or sonic measurements for rocks characterization. The P-wave velocity, which is non-destructtive and easy method to apply in both field and laboratory conditions, has increasingly been conducted to determine the geotechnical properties of rock materials. The P-wave velocity of a rock is closely related to the intact rock properties, and been measuring the velocity in rock masses describes the rock structure and texture. The present work deals with the use of a simple and non-destructive technique, ultrasonic velocity, to predict the porosity and density of calcarenite rocks that are characteristic in historical monument. The ultrasonic test is based on measuring the propagation time of a P-wave in the longitudinal direction. Good correlations between P-wave velocity, porosity and density were found, which indicated them as an appropriate technique for estimating the porosity and density.

Share and Cite:

A. Rahmouni, A. Boulanouar, M. Boukalouch, Y. Géraud, A. Samaouali, M. Harnafi and J. Sebbani, "Prediction of Porosity and Density of Calcarenite Rocks from P-Wave Velocity Measurements," International Journal of Geosciences, Vol. 4 No. 9, 2013, pp. 1292-1299. doi: 10.4236/ijg.2013.49124.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. Mamillan, “Connaissances Actuelles pour Mesurer le Degré d’Altération des Pierres et l’Efficacité des Méthodes de Traitement,” 1st International Sympo-Soium on the Deterioration of Building Stones, La Rochelle, 1972, pp. 47-56.
[2] M. Mamillan, “Méthodes d’Essais Physiques Pour Evaluer l’Altération des Pierres des Monuments, The Conservation of Stone I,” Bologna, Rossi-Manaresi, 1975, pp. 595-634.
[3] A. Bouineau, “L’Intérêt des Essais Non-Destructifs Utilisés pour l’Etude de la Restauration des Monuments et des Sculptures, Altération et Protection des Monuments en Pierres,” RILEM, Paris, 1978, pp. 1-29.
[4] G. Vasconcelos, P. B. Lourenco, C. S. A. Alves and J. Pamplona, “Prediction of the Mechanical Properties of Granites by Ultrasonic Pulse Velocity and Schmidt Hammer Hardness,” Masonry Conference, Missouri, 2007, pp. 998-1009.
[5] S. Kahraman and T. Yeken, “Determination of Physical Properties of Carbonate Rocks from P-wave Velocity,” Bulletin of Engineering Geology and the Environment, Vol. 67, No. 2, 2008, pp. 277-281.
http://dx.doi.org/10.1007/s10064-008-0139-0
[6] R. Zivor, J. Vilhelm, V. Rudajev and T. Lokajícek, “Measurement of P- and S-wave Velocities in a Rock Massif and its Use in Estimating Elastic Moduli,” Acta Geodynamica et Geomaterialia, Vol. 8, No. 2, 2011, pp. 157-167.
[7] S. Assefa, C. McCann and J. Sothcott, “Velocity of Compressional and Shear Waves in Limestones,” Geophysical Propecing,” Vol. 51, No. 1, 2003, pp. 1-13.
http://dx.doi.org/10.1046/j.1365-2478.2003.00349.x
[8] H. Soroush, H. Qutob and W. Ltd, “Evaluation of Rock Properties Using Ultrasonic Pulse Technique and Correlating Static to Dynamic Elastic Constants,” The 2nd South Asain Geoscience Conference and Exhibition, GEO India, New Delhi, 2011.
[9] E. Yasar and Y. Erdogan, “Correlating Sound Velocity With the Density, Compressive Strength and Young’s Modulus of Carbonate Rocks,” International Journal of Rock & Mining Sciences, Vol. 41, No. 5, 2004, pp. 871-875.
http://dx.doi.org/10.1016/j.ijrmms.2004.01.012
[10] Y. Youash, “Dynamic Physical Properties of Rocks: Part 2. Experimental Result,” Proceedings of the 2nd Congress of the International Society for Rock Mechanic, Beograd, Vol. 1, 1970, pp. 185-195.
[11] F. Birch, “The Velocity of Compressional Waves in Rocks to 10 Kilobars (Part I),” Journal of Geophysical Research, Vol. 65, No. 4, 1961, pp. 1083-1102.
http://dx.doi.org/10.1029/JZ065i004p01083
[12] P. Gaviglio, “Longitudinal Waves Propagation in a Limestone: The Relationship between Velocity and Density,” Rock Mechanics and Rock Engineering, Vol. 22, No. 4, 1989, pp. 299-306.
http://dx.doi.org/10.1007/BF01262285
[13] N. Zaouia, M. ELwartiti and B. Baghdad, “Superficial Alteration and Soluble Salts in the Calcarenite Weathering Case Study of Almohade Monuments in Rabat: Morocco,” Environmental Geology, Vol. 48, No. 6, 2005, pp. 742-747. http://dx.doi.org/10.1007/s00254-005-0013-3
[14] AFPC-AFREM, “Détermination de la Masse Volumique Apparente et de la Porosité Accessible à l’Eau. Méthodes Recommandées pour la Mesure des Grandeurs Associées à la Durabilité,” Compte-rendu des Journées Techniques, Toulouse, 11-12 Décembre 1997, pp. 121-124.
[15] ISRM, “Suggested Method for Rock Characterization, Testing and Monitoring,” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 18, No. 6, 1981, p. 109.
http://dx.doi.org/10.1016/0148-9062(81)90524-6
[16] ISRM, “Suggested Method for Determining Sound Velocity,” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol. 15, No. 2, 1978, pp. 53-58.
http://dx.doi.org/10.1016/0148-9062(78)91678-9
[17] Y. Géraud, “Déformation Thermomécanique et Porosité des Roches Granitiques: Evolution des Espaces Poreux,” PhD Thesis, Université de Marseille, Marseille, 1991.
[18] F Surma, “Détermination de la Porosité de la Zone Endommagée autour d’une Faille. Role des Caractéristiques du Matériau (Minéralogie, Structure de Porosité, Caractéristiques Physiques) sur les Propriétés d’Echange Fluides Roche,” PhD Thesis, Université Luis Pasteur, Strasbourg, 2003.
[19] M. Rosener, “Etude Pétrophysique et Modélisation des Effets des Transferts Thermiques entre Roche et Fluide dans le Contexte Géothermique de Soultz-Sous-Forêts,” PhD Thesis, Université Luis Pasteur, Strasbourg, 2007.
[20] P. Bousquie, “Texture et Porosité des Roches Calcaires,” PhD Thesis, Université Paris VI et Ecole des Mines de Paris, Paris, 1979.
[21] S. Yagiz, “P-Wave Velocity Test for Assessment of Geotechnical Properties of Some Rock Materials,” Bulletin of Materials Science, Vol. 34, No. 4, 2011, pp. 947-953.
http://dx.doi.org/10.1007/s12034-011-0220-3
[22] M. Khandelwal, “Correlating P-Wave Velocity with the Physico-Mechanical Properties of Different Rocks,” Pure and Applied Geophysics, Vol. 170, No. 4, 2013, pp. 507-514. http://dx.doi.org/10.1007/s00024-012-0556-7
[23] A. Boulanouar, A. Rahmouni, M. Boukalouch, Y. Géraud, I. El Amrani El Hassani, M. Harnafi and M. J. Sebbani, “Corrélation entre la Vitesse d’Onde P et la Conductivité Thermique des Matériaux Hétérogènes et Poreux,” MATEC Web of Conferences, Vol. 2, No. 05004, 2012, pp. 1-7. http://dx.doi.org/10.1051/matecconf/20120205004
[24] S. Kahraman, “The Correlations between the Saturated and Dry P-wave Velocity of Rocks,” Ultrasonics, Vol. 46, No. 4, 2007, pp. 341-348.
http://dx.doi.org/10.1016/j.ultras.2007.05.003
[25] Y. Guéguen and V. Palciauskas, “Introduction à la Physique des Roches,” Editeurs des Sciences et des Arts, Heremann, Paris, 1992, pp. 168-169.
[26] O. A. Oghenero, “Acoustic Velocity Properties of Danian Limestone Section Exposed at the Curfs Quarry, Southeastern Netherlands,” Journal of Geology and Mining Research, Vol. 4, No. 4, 2012, pp. 65-74.
[27] R. Ezzdine, “Endommagement des Monuments Historiques en Maconnerie,” PhD Thesis, Université Bordeaux 1, Bordeaux, 2009.
[28] D. Han, A. Nur and D. Morgan, “Effects of Porosity and Clay Content on Wave Velocity in Sandstones,” Geophysics, Vol. 51, No. 11, 1986, pp. 2093-2107.
http://dx.doi.org/10.1190/1.1442062
[29] T. Klimentos, “The Effect of Porosity—Permeability-Clays Content on the Velocity of Compressional Waves,” Geophysics, Vol. 56, No. 12, 1991, pp. 1930-1939.
http://dx.doi.org/10.1190/1.1443004

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.