Phase Transfer Catalysis Improved Synthesis of 3,4-Dihydropyrimidinones


Various 3,4-dihydropyrimidinones can be prepared via Biginelli reaction in aqueous media by using quaternary ammonium salts of different alkyl groups (C4 and C8) and anions (Cl- and Br-) as catalysts. The use of quaternary ammonium salts along with longer alkyl chains increases the yield of the Biginelli reaction; however, bromide ammonium salts are less active than the chloride ones.

Share and Cite:

H. Slimi, K. Saïd, Y. Moussaoui and R. Salem, "Phase Transfer Catalysis Improved Synthesis of 3,4-Dihydropyrimidinones," International Journal of Organic Chemistry, Vol. 3 No. 3A, 2013, pp. 96-100. doi: 10.4236/ijoc.2013.33A009.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] C. O. Kappe, J. Zhu and H. Beinayme, “Multicomponent Reactions,” Wiley-VCH, Weinheim, 2005.
[2] A. Doemling and I. Ugi, “Multicomponent Reactions with Isocyanide” Angewandte Chemie International Edition, Vol. 39, No. 18, 2000, pp. 3168-3210.
[3] A. Doemling, “Multicomponent Reactions—Superior Chemistry Technology for the New Millennium,” Organic Chemistry Highlights, 2005.
[4] C. O. Kappe, “Recent Advances in the Biginelli Dihydropyrimidine Synthesis. New Triks from an Old Dog,” Accounts of Chemical Research, Vol. 33, No. 12, 2000, pp. 879-888.
[5] R. W. Armstong, A. P. Combs, P. A. Tempest, S. D. Brown and T. A. Keating, “Multiple-Component Condensation Strategies for Combinatorial Library Synthesis,” Accounts of Chemical Research, Vol. 29, No. 3, 1996, pp. 123-131.
[6] L. Weber, “The Application of Multi-Component Reactions in Drug Discovery,” Current Medicinal Chemistry, Vol. 9, No. 23, 2002, pp. 2085-2093.
[7] B. Ganen, “Strategies for Innovation in Multicomponent Reaction Design,” Accounts of Chemical Research, Vol. 42, No. 3, 2009, pp. 463-472.
[8] A. Doemling, “Recent Developments in Isocyanide Based Multicomponent Reactions in Applied Chemistry,” Chemical Reviews, Vol. 106, No. 1, 2006, pp. 17-89.
[9] L. F. Tietze and N. Rackelmann, “Domino Reactions in the Synthesis of Heterocyclic Natural Products and Analogs,” Pure and Applied Chemistry, Vol. 76, No. 11, 2004, pp. 1967-1983.
[10] I. Ugi, B. Werner and A. Domling, “The Chemistry of Isocyamides, Their Multicomponent Reactions and Their Libraries,” Molecules, Vol. 8, No. 1, 2003, pp. 53-66.
[11] P. Biginelli, “Aldehyde-Urea Derivatives of Acetoand Oxaloacetic Acids,” Gazzetta Chimica Italiana, Vol. 23, No. 1, 1893, pp. 360-413.
[12] D. J. Vugts, M. M. Koningstein, R. F. Schmtiz, F. J. J. kanter, M. B. Groen and R. V. A. Orru, “Multicomponent Synthesis of Dihydropyrimidines and Thiazines,” Chemistry—A European Journal, Vol. 12, No. 27, 2006, pp. 7178-7189.
[13] B. R. P. Kumar, G. Sankar, R. B. N. Baig and S. Chandrashekaran, “Novel Biginelli Dihydropyrimidines with Potential Anticancer Activity: A Parallel Synthesis and CoMSIA Study,” European Journal of Medicinal Chemistry, Vol. 44, No. 10, 2009, pp. 4192-4198.
[14] H. A. Stefani, C. B. Oliveira, R. B. Almeida, C. M. P. Pereira, R. C. Braga, R. Cella, V. C. Borges, L. Savegnago and C. W. Nogueira, “Dihydropyrimidin-(2H)-ones Obtained by Ultrasound Irradiation: A New Class of Potential Antioxidant Agents,” European Journal of Medicinal Chemistry, Vol. 41, No. 4, 2006, pp. 513-518.
[15] D. L. Silva, F. S. Reis, R. M. Dandara, A. L. T. G. Ruiz, J. E. Carvalho, A. A. Sabino, L. V. Modolo and A. Fatima, “Free Radical Scavenging and Antiproliferative Properties of Biginelli Adducts,” Bioorganic & Medicinal Chemistry, Vol. 20, No. 8, 2012, pp. 2645-2650.
[16] D. Russowski, R. F. S. Canto, S. A. A. Sanches, M. G. M. D’Oca, A. D. Fatima, R. A. Pilli, L. K. Kohn, M. A. Antonio and J. E. D. Carvalho, “Synthesis and Differential Antiproliferative Activity of Biginelli Compounds against Cancer Cell Lines: Monastrol, Oxo-Monastrol and Oxygenated Analogues,” Bioorganic Chemistry, Vol. 34, No. 4, 2006, pp. 173-182.
[17] B. Jank, T. Pernat and C. O. Kappe, “Design and Synthesis of a Conformationally Rigid Mimic of the Dihydropyrimidine Calcium Channel Modulator SQ32,926,” Molecules, Vol. 5, No. 3, 2000, pp. 227-239.
[18] J. Peng and Y. Deng, “Ionic Liquids Catalyzed Biginelli Reaction under Solvent-Free Conditions,” Tetrahedron Letters, Vol. 42, No. 34, 2001, pp. 5917-5919.
[19] J. Lu, Y. Bai, Z. Wang, B. Yang and H. Ma, “One Pot Synthesis of 3,4-Dihydropyrimidin-2(1H)-Ones Using Lanthanum Chloride as a Catalyst,” Tetrahedron Letters, Vol. 41, No. 47, 2000, pp. 9075-9078.
[20] B. C. Ranu, A. Hajra and U. Jana, “Indium (III) Chloridecatalyzed One Pot Synthesis of Dihydropyrimidinones by a Three-Component Coupling of 1,3-Dicarbonyl Compounds, Aldehydes, and Urea: An Improved Procedure for the Biginelli Reaction,” Journal of Organic Chemistry, Vol. 65, No. 19, 2000, pp. 6270-6272.
[21] G. Sabitha, G. S. K. Kumar Reddy, C. S. Reddy and J. S. Yadav, “One Pot Synthesis of Dihydropyrimidinones Using Iodotrimethylsilane. Facile and New Improved Protocol for the Biginelli Reaction at Room Temperature,” Synlett, Vol. 2003, No. 6, 2003, pp. 858-860.
[22] G. Maiti, P. Kundu and C. Guin, “One Pot Synthesis of Dihydropyrimidinones Catalysed by Lithium Bromide: An Improved Procedure for the Biginelli Reaction,” Tetrahedron Letters, Vol. 44, No. 13, 2003, pp. 2757-2758.
[23] M. A. Chari, D. Shoda, T. K. Kumar and P. K. Dubey, “Bismuth (III) Nitrate Catalyzed One-Pot Synthesis of 3,4-Dihydropyrimidin-2(1H)-Ones: An Improved Protocol for the Biginelli Reaction,” Arkivoc, Vol. 2005, No. 15, 2005, pp. 74-80.
[24] A. Debache, M. Amimour, A. Belfaitah, S. Rhouati and B. Carboni, “A One-Pot Biginelli Synthesis of 3,4-Dihydropyrimidin-2-(1)-Ones/Thiones Catalyzed by Triphenylphosphine as Lewis Base,” Tetrahedron Letters, Vol. 49, No. 42, 2008, pp. 6119-6121.
[25] C. O. Kappe, “100 Years of the Biginelli Dihydropyrimidine Synthesis,” Tetrahedron, Vol. 49, No. 32, 1993, pp. 6937-6963.
[26] K. Folkers and T. B. Johnson, “Hydrogenation of Cyclic Ureids under Elevated Temperatures and Pressures. I1. 2-Keto-1,2,3,4-Tetrahydropyrimidines,” Journal of the American Chemical Society, Vol. 56, No. 5, 1934, pp. 1180-1185.
[27] P. Wipf and A. Cunningham, “A Solid Phase Protocol of the Biginelli Dihydropyrimidine Synthesis Suitable for Combinatorial Chemistry,” Tetrahedron Letters, Vol. 36, No. 43, 1995, pp. 7819-7822.
[28] F. Tamaddon, Z. Razmi and A. A. Jafari, “Synthesis of 3,4-Dihydropyrimidin-2(1H)-Ones and 1,4-Dihydropyridines Using Ammonium Carbonate in Water,” Tetrahedron Letters, Vol. 51, No. 8, 2010, pp. 1187-1189.
[29] A. Kumar and R. A. Maurya, “Efficient Synthesis of Hantzsch Esters and Polhydroquinoline Derivatives in Aqueous Nicelles,” Synlett, Vol. 2008, No. 6, 2008, pp. 883-885.
[30] B. Ahmed, R. A. Khan, Habibullah and M. Keshari, “An Improved Synthesis of Biginelli-Type Compounds via Phase-Transfer Catalysis,” Tetrahedron Letters, Vol. 50, No. 24, 2009, pp. 2889-2892.
[31] A. Ziyaei-Halimehjani and M. R. Saidi, “Synthesis of Aza-Henry Products and Enamines in Water by Michael Addition of Amines or Thiols to Activated Unsaturated Compounds,” Tetrahedron Letters, Vol. 49, 2008, pp. 1244-1248.
[32] A. A. Jafari, F. Moradgholi and F. Tamaddon, “Pronounced Catalytic Effect of a Micellar Solution of Sodium Dodecylsulfate (SDS) upon a Three-Component Reaction of Aldehydes, Amines, and Ketones under Neutral Conditions,” European Journal of Organic Chemistry, Vol. 2009, No. 8, 2009, pp. 1249-1255.
[33] C. J. Li and T. H. Chan, “Organic Reaction in Aqueous Media,” John Wiley and Sons Inc., New York, 1997.
[34] S. Kobayashi, “Asymmetric Catalysis in Aqueous Media,” Pure and Applied Chemistry, Vol. 79, No. 2, 2007, pp. 235-245.
[35] C. J. Li, “Organic Reactions in Aqueous Media with a Focus on Carbon-Carbon Bond Formations: A Decade Update,” Chemical Reviews, Vol. 105, No. 8, 2005, pp. 3095-3166.
[36] Y. Moussaoui and R. Ben Salem, “Synthesis of 3,4-Dihydropyrimidinones via Phase Transfer Catalysis,” Journal of Heterocyclic Chemistry, Vol. 50, No. 5, 2013, pp. 1209-1212.
[37] H. Kumar and A. Parmar, “Ultrasound Promoted ZrCl4 Catalyzed Rapid Synthesis of Substituted 1,2,3,4-Tetrahydropyrimidine-2-Ones in Solvent or Dry Media,” Ultrasonics Sonochemistry, Vol. 15, No. 2, 2008, pp. 129-132.
[38] N. Y. Fu, Y. F. Yuan, Z. Cao, S. W. Wang, J. T. Wang and C. Peppe, “Indium(III) Bromide-Catalyzed Preparation of Dihydropyrimidinones: Improved Protocol Conditions for the Biginelli Reaction,” Tetrahedron, Vol. 58, No. 24, 2002, pp. 4801-4807.
[39] Y. Yu, D. Liu, C. Liu and G. Luo, “One-Pot Synthesis of 3,4-Dihydropyrimidin-2(1H)-Ones Using Chloroacetic Acid as Catalyst,” Bioorganic & Medicinal Chemistry Letters, Vol. 17, No. 12, 2007, pp. 3508-3510.
[40] M. K. Raj, H. S. P. Rao, S. G. Manjunatha, R. Sridharan, S. Nambiar, J. Keshwan, J. Rappai, S. Bhagat, B. S. Shwetha, D. Hegde and U. Santhosh, “A Mechanistic Investigation of Biginelli Reaction under Base Catalysis,” Tetrahedron Letters, Vol. 52, No. 28, 2011, pp. 3605-3609.
[41] J. J. V. Eynde, N. Audiort, V. Canonne, S. Michel, Y. V. Haverbeke and C. O. Kappe, “Synthesis and Aromatization of Dihydropyrimidines Structurally Related to Calcium Channel Modulators of the Nifedipine-Type,” Heterocycles, Vol. 45, No. 10, 1997, pp. 1967-1978.
[42] H. Y. Ju, M. D. Manju, K. H. Kim, S.W. Park and D. W. Park, “Catalytic Performance of Quaternary Ammonium Salts in the Reaction of Butyl Glycidyl Ether and Carbon Dioxide,” Journal of Industrial and Engineering Chemistry, Vol. 14, No. 2, 2008, pp. 157-160.
[43] Y. Moussaoui and R. Ben Salem, “Michael Additions of Nitroalkanes to Conjugated Ketones, Carboxylic Esters and Nitriles in Water and Biphasic Conditions (Water-Dichloromethane),” Journal de la Societé Chimique de Tunisie, Vol. 11, No. 1, 2009, pp. 37-43.
[44] Y. Moussaoui, K. Saïd and R. Ben Salem, “Anionic Activation of the Wittig Reaction Using a Solid-Liquid Phase Transfer: Examination of the Medium, Temperature, Base and Phase Transfer Catalysts Effects,” ARKIVOC, Vol. 2006, No. 12, 2006, pp. 1-22.
[45] I. Artaud, J. Seyden-Penne and P. Viout, “Transfert de Phase Solide-Liquide: Influence de l’agent de Transfert sur la Reaction de Formation de Cyclopropanes, ” Tetrahedron Letters, Vol. 21, No. 7, 1980, pp. 613-616.

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.