Biological Activities of Schiff Bases and Their Complexes: A Review of Recent Works


Schiff bases are the most widely used organic compounds. They have been shown to exhibit a broad range of biological activities, including antifungal, antibacterial, antimalarial, antiproliferative, anti-inflammatory, antiviral, and antipyretic properties. This review summarizes the synthesis and biological activities of Schiff bases and their complexes.

Share and Cite:

W. Zoubi, "Biological Activities of Schiff Bases and Their Complexes: A Review of Recent Works," International Journal of Organic Chemistry, Vol. 3 No. 3A, 2013, pp. 73-95. doi: 10.4236/ijoc.2013.33A008.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] K. C. Gupta and A. K. Sutar, “Catalytic Activities of Schiff Base Transition Metal Complexes,” Coordination Chemistry Reviews, Vol. 252, No. 12-14, 2008, pp. 1420-1450.
[2] P. G. Cozzi, “Metal-Salen Schiff Base Complexes in Catalysis: Practical Aspects,” Chemical Society Reviews, Vol. 33, No. 7, 2004, pp. 410-421.
[3] B. Tu¨rkkan, B. Sariboga and N. SarIboga, “Synthesis, Characterization and Antimicrobial Activity of 3,5-DiTert-Butylsalicylaldehyde-S-Methylthiosemicarbazones and Their Ni(II) Complexes,” Transition Metal Chemistry, Vol. 36, No. 6, 2011, pp. 679-684.
[4] V. L. Siji, M. R. Sudarsanakumar and S. Suma, “Synthesis, Spectroscopic Characterization, and Antimicrobial Activity of Cobalt(II) Complexes of Acetone-N(4) Phenylsemicarbazone: Crystal Structure of [Co(HL)2(MeOH)2](NO3)2,” Transition Metal Chemistry, Vol. 36, No. 4, 2011, pp. 417-424.
[5] C. V. Krishnamohan Sharma, “Crystal Engineering— Where Do We Go from Here?” Crystal Growth & Design, Vol. 2, No. 6, 2002, pp. 465-474.
[6] I. Ahamad, R. Prasad and M. A. Quraishi, “Thermodynamic, Electrochemical and Quantum Chemical Investigation of Some Schiff Bases as Corrosion Inhibitors for Mild Steel in Hydrochloric Acid Solutions,” Corrosion Science, Vol. 52, No. 3, 2010, pp. 933-942.
[7] M. Antonijevic and M. Petrovic, “Copper Corrosion Inhibitors. A Review,” International Journal of Electrochemical Science, Vol. 3, No. 1, 2008, pp. 1-28
[8] H. Sharghi and M. A. Nasseri, “Schiff-Base Metal(II) Complexes as New Catalysts in the Efficient, Mild and Regioselective Conversion of 1,2-Epoxyethanes to 2-Hydroxyethyl Thiocyanates with Ammonium Thiocyanate,” Bulletin of the Chemical Society of Japan, Vol. 76, No. 1, 2003, pp. 137-142.
[9] W. T. Gao and Z. Zheng, “Synthetic Studies on Optically Active Schiff-base Ligands Derived from Condensation of 2-Hydroxyacetophenone and Chiral Diamines,” Molecules, Vol. 7, No. 7, 2002, pp. 511-516.
[10] J. Balsells, L. Mejorado, M. Phillips, F. Ortega, G. Aguirre, R. Somanathan and P. J. Walsh, “Synthesis of Chiral Sulfonamide/Schiff Base Ligands,” Tetrahedron: Asymmetry, Vol. 9, No. 23, 1998, pp. 4135-4142.
[11] A. M. Isloor, B. Kalluraya and P. Shetty, “Regioselective Reaction: Synthesis, Characterization and Pharmacological Studies of Some New Mannich Bases Derived from 1,2,4-Triazoles,” European Journal of Medicinal Chemistry, Vol. 44, No. 9, 2009, pp. 3784-3787.
[12] S. Krishnaraj, M. Muthukumar, P. Viswanathamurthi and S. Sivakumar, “Studies On Ruthenium(Ii) Schiff Base Complexes as Catalysts for Transfer Hydrogenation Reactions,” Transition Metal Chemistry, Vol. 33, No. 5, 2008, pp. 643-648.
[13] S. Eswaran, A. V. Adhikari and N. S. Shetty, “Synthesis and Antimicrobial Activities of Novel Quinoline Derivatives Carrying 1,2,4-Triazole Moiety,” European Journal of Medicinal Chemistry, Vol. 44, No. 11, 2009, pp. 4637-4647.
[14] P. Przybylski, A. Huczynski, K. Pyta, B. Brzezinski and F. Bartl, “Biological Properties of Schiff Bases and Azo Derivatives of Phenols,” Current Organic Chemistry, Vol. 13, No. 2, 2009, pp. 124-148.
[15] G. Bringmann, M. Dreyer, J. H. Faber, P. W. Dalsgaard, D. Staerk and J. W. Jaroszewski, “Ancistrotanzanine C and Related 5,1‘and 7,3‘-Coupled Naphthylisoquinoline Alkaloids from Ancistrocladus tanzaniensis,” Journal of Natural Products, Vol. 67, No. 5, 2004, pp. 743-748.
[16] A. O. deSouza, F. C. S. Galetti, C. L. Silva, B. Bicalho, M. M. Parma, S. F. Fonseca, A. J. Marsaioli, A. C. L. B. Trindade, R. P. Freitas Gil, F. S. Bezerra, M. Andrade-Neto and M. C. F. de Oliveira, “Antimycobacterial and Cytotoxicity Activity of Synthetic and Natural Compounds,” Quimica Nova, Vol. 30, No. 7, 2007, pp. 1563-1566.
[17] Z. Y. Guo, R. Xing, S. Liu, Z. Zhong, X. Ji, L. Wang and P. C. Li, “Antifungal Properties of Schiff Bases of Chitosan, N-Substituted Chitosan and Quaternized Chitosan,” Carbohydrate Research, Vol. 342, No. 10, 2007, pp. 1329-1332.
[18] M. S. Yadawe and S. A. Patil, “Synthesis, Characterization and Biological Studies of Cobalt (II) and Nickel(II) Complexes with New Schiff Bases,” Transition Metal Chemistry, Vol. 22, No. 3, 1997, pp. 220-224.
[19] M. Tumer, H. Kohsal, S. Serin and M. Digˉrak, “Antimicrobial Activity Studies of Mononuclear and Binuclear Mixed-Ligand Copper (II) Complexes Derived from Schiff Base Ligands and 1,10-Phenanthroline,” Transition Metal Chemistry, Vol. 24, No. 1, 1999, pp. 13-17.
[20] M. Tofazzal, H. Tarafder, M. A. Ali, N. Saravanan, W. Y. Weng, S. Kumar, N. Umar Tsafe and K. A. Crouse, “Coordination Chemistry and Biological Activity of Two Tridentate ONS and NNS Schiff Bases Derived from S-Benzyldithiocarbazate,” Transition Metal Chemistry, Vol. 25, No. 3, 2000, pp. 295-298.
[21] P. Vicini, F. Zani, P. Cozzini and I. Doytchinova, “Hydrazones of 1,2-Benzisothiazole Hydrazides: Synthesis, Antimicrobial Activity and QSAR Investigations,” European Journal of Medicinal Chemistry, Vol. 37, No. 7, 2002, pp. 553-564.
[22] S. Rollas, N. Gulerman and H. Erdeniz, “Synthesis and Antimicrobial Activity of Some New Hydrazones of 4-Fluorobenzoic Acid Hydrazide and 3-Acetyl-2,5-Disubstituted-1,3,4-Oxadiazolines,” II Farmaco, Vol. 57, No. 2, 2002, pp. 171-174.
[23] I. Yilmaz and A. Cukurovali, “Synthesis, Characterization and Antimicrobial Activity of the Schiff Bases Derived from 2,4-Disubstituted Thiazoles and 3-Meth-oxysalicylaldehyde, and Their Cobalt(II), Copper(II), Nickel(II) and Zinc(II) Complexes,” Transition Metal Chemistry, Vol. 28, No. 4, 2003, pp. 399-404.
[24] N. Ramam, A. Kulandaisamy, C. Thangaraja and K. Jeyasubramanian, “Redox and Antimicrobial Studies of Transition Metal (II) Tetradentate Schiff Base Complexes,” Transition Metal Chemistry, Vol. 28, No. 1, 2003, pp. 29-36.
[25] T. D. Thangadurai and S. K. Ihm, “Antimicrobial Activities against Methicillin-Resistant Staphylococcus aureus from macroalgae,” Journal of Industrial and Engineering Chemistry, Vol. 14, No. 5, 2008, pp. 568-572.
[26] Raman and S. Johnson Raja, “DNA Cleavage, Structural Elucidation and Anti-Microbial Studies of Three Novel Mixed Ligand Schiff Base Complexes of Copper(II),” Journal of the Serbian Chemical Society, Vol. 72, No. 10, 2007, pp. 983-992.
[27] R. Maruvada, S. C. Pal and G. B. Nair, “Effects of Polymyxin B on the Outer Membranes of Aeromonas Species,” Journal of Microbiological Methods, Vol. 20, No. 2, 1994, pp. 115-124.
[28] T. J. Franklin and G. A. Snow, “Penetrating the Defences,” In: Biochemistry of Antimcrobial Action, 2nd Edition, Chapman, Hall, London, 1971, pp. 1-16.
[29] G. Turan-Zitouni, Z. A. Kaplancikli, M. T. Yildiz, P. Chevallet and D. Kaya, “Synthesis and Antimicrobial Activity of 4-phenyl/cyclohexyl-5-(1-phenoxyethyl)-3-[N-(2-thiazolyl)acetamido]-thio-4H-1,24-triazole Derivatives,” European Journal of Medicinal Chemistry, Vol. 40, No. 6, 2005, pp. 607-613.
[30] W. Rehman, M. K. Baloch, B. Muhammad, A. Badshah and K. M. Khan, “Characteristic Spectral Studies and in Vitro Antifungal Activity of Some Schiff Bases and Their Organotin (VI) Complexes,” Chinese Science Bulletin, Vol. 49, No. 2, 2004, pp. 119-122.
[31] L. Sakiyan, E. Logoglu, S. Arslan, N. Sari and N. Sakiyan, “Antimicrobial Activities of N-(2-Hydroxy-1-Naphthalidene)-Amino Acid(Glycine, Alanine, Phenylalanine, Histidine, Tryptophane) Schiff Bases and Their Manganese(III) Complexes,” Biometals, Vol. 17, No. 2, 2004, pp. 115-120.
[32] A. Vazzana, E. Terranova, F. Mattioli and F. Sparatore, “Aromatic Schiff Bases and 2,3-Disubstituted-1,3-Thiazolidin-4-One Derivatives as Antiinflammatory Agents,” ARKIVOC, Vol. 2004, No. 5, 2004, pp. 364-374.
[33] E. Ispir, M. Kurtoglu, F. Purtas and S. Serin, “Synthesis and Antimicrobial Activity of New Schiff Bases Having the -SiOR Group (R = CH 3 or CH2CH3), and Their Transition Metal Complexes,” Transition Metal Chemistry, Vol. 30, No. 8, 2005, pp. 1042-1047.
[34] S. K. Sengupta, O. P. Pandey, B. K. Srivastava and V. K. Sharma, “Trends in Structural Mechanics: Theory, Practice,” Transition Metal Chemistry, Vol. 23, 1998, p. 349.
[35] M. Kurtoglu, E. Ispir, N. Kurtolu, S. Toroglu, S. Serin, R. N. Srivastava and A. Bagga, “Pediatric Nephrology,” In: Transition Metal Chemistry, 2005.
[36] N. Raman, J. Joseph, A. S. Kumara and C. Pothiraj, “Antifungal Activities of Biorelevant Complexes of Copper(II) with Biosensitive Macrocyclic Ligands,” Mycobiology, Vol. 34, No. 4, 2006, pp. 214-218.
[37] H. M. Parekh, S. R. Mehta and M. N. Patel, “Synthesis, Structural Characterization, and Antifungal Activity of Schiff Bases and Their Transition Metal Mixed Ligand Complexes,” Russian Journal of Inorganic Chemistry, Vol. 51, No. 1, 2006, pp. 67-72.
[38] M. Wujec, U. Kosikowska, P. Paneth and A. Malm, “Reaction of Hydrazide of (tetrazol-5-yl)Acetic Acid with Isothiocyanates and Antimicrobial Investigations of Newly-Obtained Compounds,” Heterocycles, Vol. 71, No. 12, 2007, pp. 2617-2626.
[39] D. Yong, M. A. Toleman, C. G. Giske, H. S. Cho, K. Sundman, K. Lee and T. Walsh, “Characterization of a New Metallo-β-Lactamase Gene, blaNDM-1, and a Novel Erythromycin Esterase Gene Carried on a Unique Genetic Structure in Klebsiella pneumoniae Sequence Type 14 from India,” Antimicrobial Agents and Chemotherapy, Vol. 53, No. 12, 2009, pp. 5046-5054.
[40] H. Bayrak, A. Demirbas, N. Demirbas and S. A. Karaoglu, “Synthesis of Some New 1,2,4-Triazoles Starting from Isonicotinic Acid Hydrazide and Evaluation of Their Antimicrobial Activities,” European Journal of Medicinal Chemistry, Vol. 44, No. 11, 2009, pp. 4362-4366.
[41] M. Shakir, Y. Azim, H. T. N. Chishti and S. Parveen, “Synthesis, Characterization of Complexes of Co(II), Ni(II), Cu(II) and Zn(II) with 12-Membered Schiff Base Tetraazamacrocyclic Ligand and the Study of Their Antimicrobial and Reducing Power,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Vol. 65, No. 2, 2006, pp. 490-496.
[42] L. Shi, H. M. Ge, S. H. Tan, H. Q. Li, Y. C. Song, H. L. Zhu and R. X. Tan, “Synthesis and Antimicrobial Activities of Schiff Bases Derived from 5-Chloro-Salicylaldehyde,” European Journal of Medicinal Chemistry, Vol. 42, No. 4, 2007, pp. 558-564.
[43] H. Mukundan, A. S. Anderson, W. K. Grace, K. M. Grace, N. Hartman, J. S. Martinez and B. I. Swanson, “WaveguideBased Biosensors for Pathogen Detection,” Sensors, Vol. 9, No. 7, 2009, pp. 5783-5809.
[44] B. Sammanta, J. Chakraborty, C. R. Choudhury, S. K. Dey, D. K. Dey, S. R. Batten, P. Jensen, G. P. A. Yap and S. Mitra, “New Cu(II) Complexes with Polydentate Chelating Schiff Base Ligands: Synthesis, Structures, Characterisations and Biochemical Activity Studies,” Structural Chemistry, Vol. 18, No. 1, 2007, pp. 33-41.
[45] D. P. Singh, R. Kumar and J. Singh, “Synthesis and Spectroscopic Studies of Biologically Active Compounds Derived from Oxalyldihydrazide and Benzil, and Their Cr(III), Fe(III) and Mn(III) Complexes,” European Journal of Medicinal Chemistry, Vol. 44, No. 4, 2009, pp. 1731-1736.
[46] T. Farkas, M. Antal, L. Sámi, P. Germán, S. Kecskemé, G. Kardos, S. Belák and I. Kiss, “Rapid and Simultaneous Detection of Avian Influenza and Newcastle Disease Viruses by Duplex Polymerase Chain Reaction Assay,” Zoonoses and Public Health, Vol. 54, No. 1, 2007, pp. 38-43.
[47] V. P. Singh, A. Katiyar and S. Singh, “Synthesis, Characterization of Some Transition Metal(II) Complexes of Acetone p-Amino Acetophenone Salicyloyl Hydrazone and their Anti Microbial Activity,” Biometals, Vol. 21, No. 4, 2008, pp. 491-501.
[48] W. Rehman, F. Saman and I. Ahmad, “Synthesis, Characterization, and Biological Study of Some Biologically Potent Schiff Base Transition Metal Complexes,” Russian Journal of Coordination Chemistry, Vol. 34, No. 9, 2008, pp. 678-682.
[49] H. Khanmohammadi, M. H. Abnosi, A. Hosseinzadeh and M. Erfantalab, “Synthesis, Biological and Computational Study of New Schiff Base Hydrazones Bearing 3-(4-Pyridine)-5-Mercapto-1,2,4-Triazole Moiety,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Vol. 71, No. 4, 2008, pp. 1474-1480.
[50] C. Yuan, L. Lu, X. Gao, Y. Wu, M. Guo, Y. Li, X. Fu and M. Zhu, “Ternary Oxovanadium(IV) Complexes of ONO-Donor Schiff Base and Polypyridyl Derivatives as Protein Tyrosine Phosphatase Inhibitors: Synthesis, Characterization, and Biological Activities,” Journal of Biological Inorganic Chemistry, Vol. 14 , No. 6, 2009, pp. 841-851.
[51] V. B. Badwaik, R. D. Deshmukh and A. S. Aswar, “Synthesis, Structural, and Biological Studies of Some Bivalent Metal Ion Complexes with the Tridentate Schiff Base Ligand,” Russian Journal of Coordination Chemsitry, Vol. 35, No. 4, 2009, pp. 247-252.
[52] L. A. Saghatforoush, A. Aminkhani and F. Chalabian, “Iron(III) Schiff Base Complexes with Asymmetric Tetradentate Ligands: Synthesis, Spectroscopy, and Antimicrobial Properties,” Transition Metal Chemistry, Vol. 34 , No. 8, 2009, pp. 899-904.
[53] D. P Singh, K. Kumar and C. Sharma, “Antimicrobial Active Macrocyclic Complexes of Cr(III), Mn(III) and Fe(III) with Their Spectroscopic Approach,” European Journal of Medicinal Chemistry, Vol. 44, No. 8, 2009, pp. 3299-3304.
[54] K. Shanker, R. Rohini, V. Ravinder, P. M. Reddy and Y. P. Ho, “Ru(II) Complexes of N4 and N2O2 Macrocyclic Schiff Base Ligands: Their Antibacterial and Antifungal Studies,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Vol. 73, No. 1, 2009, pp. 205-211.
[55] I. H. Pandya and M. K. Shah, “Synthesis and Antimicrobial Properties of Transition Metal Complexes of Novel Schiff Base Ligand Derived from 5-Bromosalicyldehyde,” Journal of Indian Council of Chemists, Vol. 26, No. 2, 2009, pp. 109-112.
[56] H. Bayrak, A. Demirbas, S. A. Karaoglu and N. Demirbas, “Synthesis of Some New 1,2,4-Triazoles, Their Mannich and Schiff Bases and Evaluation of Their Antimicrobial Activities,” European Journal of Medicinal Chemistry, Vol. 44, No. 3, 2009, pp. 1057-1066.
[57] R. V. Singh, P. Chaudhary, S. Chauhan and M. Swami, “Microwave-Assisted Synthesis, Characterization and Biological Activities of Organotin (IV) Complexes with Some Thio Schiff Bases,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Vol. 72, No. 2, 2009, pp. 260-268.
[58] B. I. Slavica, K. Sandra, S. Dragisa, B. V. Vlada and C. Gojgic, “The Impact of Schiff Bases on Antibiotic Production by Streptomyces hygroscopicus,” Medicinal Chemistry Research, Vol. 19, No. 7, 2010, pp. 690-697.
[59] Z. Yang and L. W. Hui, “Syntheses, Crystal Structures and Antibacterial Activities of Azido-Bridged Cobalt (III) Complexes with Schiff Bases,” Transition Metal Chemistry, Vol. 35, No. 6, 2010, pp. 745-749.
[60] A. K. Singh, O. P. Pandey and S. K. Sengupta, “Synthesis, Spectral Characterization and Biological Activity of Zinc(II) Complexes with 3-Substituted Phenyl-4-Amino-5-Hydrazino-1, 2, 4-Triazole Schiff Bases,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Vol. 85 , No. 1, 2012, pp. 1-6.
[61] A. B. Gunduzalp and H. F. Ozbay, “The Synthesis, Characterization and Antibacterial Activities of Dinuclear Ni(II), Cu(II) and Fe(III) Schiff Base Complexes1,” Russian Journal of Inorganic Chemistry, Vol. 57, No. 2, 2012, pp. 257-260.
[62] T. Plech, M. Wujec, M. Majewska, U. Kosikowska and A. Malm, “Microbiologically Active Mannich Bases Derived from 1,2,4-Triazoles. The Effect of C-5 Substituent on Antibacterial Activity,” Medicinal Chemistry Research, Vol. 22, No. 5, 2013, pp. 2531-2537.
[63] A. M. Hassan, A. M. Nassar, Y. Z. Hussien and A. N. Elkmash, “Synthesis, Characterization and Biological Evaluation of Fe (III), Co (II), Ni(II), Cu(II), and Zn(II) Complexes with Tetradentate Schiff Base Ligand Derived from Protocatechualdehyde with 2-Aminophenol,” Applied Biochemistry and Biotechnology, Vol. 167, No. 3, 2012, pp. 581-594.
[64] M. Kalanithi, M. Rajarajan, P. Tharmaraj and C. D. Sheela, “Redox and Antimicrobial Studies of Transition Metal(II) Tetradentate Schiff Base Complexes,” Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Vol. 87 , 2012, pp. 155-162.
[65] S. Arulmurugan, H. P. Kavitha1 and B. R. Venkatraman, “Biolgical Activties of Shiff Base and Its Complexes: A Review,” Rasayan Journal of Chemistry, Vol. 3, No. 3, 2010, pp. 385-410.
[66] N. Raman and C. Thangaraja, “Synthesis and Structural Characterization of a Fully Conjugated Macrocyclic Tetraaza(14)-Membered Schiff Base and Its Bivalent Metal Complexes,” Transition Metal Chemistry, Vol. 30, No. 3, 2005, pp. 317-322.
[67] N. Raman, A. Kulandaisamy, C. Thangaraja, P. Manisankar, S. Viswanathan and C. Vedhi, “Synthesis, Structural Characterisation and Electrochemical and Antibacterial Studies of Schiff Base Copper Complexes,” Transition metal Chemistry, Vol. 29, No. 2, 2004, pp. 129-135.

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.