Current Limitations and Challenges with Lactic Acid Bacteria: A Review

DOI: 10.4236/fns.2013.411A010   PDF   HTML   XML   9,649 Downloads   15,317 Views   Citations


Lactic acid bacteria (LAB) play a critical role in food, agricultural, and clinical applications. The fast growing characteristics of LAB and their metabolic activity have been the key in most applications including food production, agricultural industry, and probiotics. However, the biochemical and biophysical environments have significant effect on the growth and metabolic activity of LAB. While the biochemical conditions are most likely established, controlling and optimizing of biochemical conditions have many limitations and challenges. In addition to selecting the right strain, desirable metabolic processes required optimizing and controlling the available nutrients including sugars, peptides, free amino acids, minerals, and vitamins in addition to buffering agents. Thus, much of research was conducted to understand the impact of available nutrients on the growth and metabolic activities of LAB. However, only a few nutritional parameters could be controlled at a time while holding other parameters constant. The nutritional parameters may also interact with each other resulting in faulty results. Characteristics of LAB such as fastidiousness in their nutritional requirements, ability to produce acid and antimicrobial compounds, and variations in the nutritional requirements among strains have added additional limitations and challenges in this regard. Thus, chemically defined media (CDM) were suggested to deal with different limitations and challenges. However, due to differences in growth conditions, results obtained in CDM may face some obstacles when it comes to industrial applications. Thus, this paper aimed to review the recent data in regard to the role of the nutritional requirements of LAB in optimizing and controlling metabolic activities and to discuss the associated limitations and challenges.

Share and Cite:

S. Hayek and S. Ibrahim, "Current Limitations and Challenges with Lactic Acid Bacteria: A Review," Food and Nutrition Sciences, Vol. 4 No. 11A, 2013, pp. 73-87. doi: 10.4236/fns.2013.411A010.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] D. Song, S. Ibrahim and S. Hayek, “Recent Application of Probiotics in Food and Agricultural Science,” In: E. C. Rigobelo, Ed., Probiotics, InTech, Manhattan, 2012, pp. 1-34.
[2] H. Rodríguez, J. A. Curiel, J. M. Landete, B. de las Rivas, F. L. de Felipe, C. Gómez-Cordovés, J. M. Mancheno and R. Munoz, “Food Phenolics and Lactic Acid Bacteria,” International Journal of Food Microbiology, Vol. 132, No. 2-3, 2009, pp. 79-90.
[3] L. Morelli, M. L. Calleagri, F. K. Vogensen and A. Von Wright, “Genetics of Lactic Acid Bacteria,” In: S. Lahtinne, S. Salminen, A. Von Wright and A. Ouwehand, Eds., Lactic Acid Bacteria: Microbiological and Functional Aspects, CRC Press, London, 2011, pp. 18-33.
[4] A. Von Wright and L. Axelsson, “Lactic Acid Bacteria: An Introduction,” In: S. Lahtinne, S. Salminen, A. Von Wright and A. Ouwehand, Eds., Lactic Acid Bacteria: Microbiological and Functional Aspects, CRC Press, London, 2011, pp. 1-17.
[5] E. Vera Pingitore, E. M. Hebert, F. Sesma and M. E. Nader-Macias, “Influence of Vitamins and Osmolites on Growth and Bacteriocin Production by Lactobacillus salivarius CRL 1328 in a Chemically Defined Medium,” Canadian Journal of Microbiology, Vol. 55, No. 3, 2009, pp. 304-310.
[6] E. M. Hébert, R. R. Raya and G. S. de Giori, “Evaluation of Minimal Nutritional Requirements of Lactic Acid Bacteria Used in Functional Foods,” In: J. M. Walker, J. F. Spencer and A. L. Ragout de Spencer, Eds., Methods in Biotechnology, Humana Press, Totowa, 2004, pp. 139150.
[7] C. Letort and V. Juillard, “Development of a Minimal Chemically Defined Medium for the Exponential Growth of Streptococcus thermophilus,” Journal of Applied Microbiology, Vol. 91, No. 6, 2001, pp. 1023-1029.
[8] S. Tripuraneni, “Effect of Nutrient Supplements on Cucumber Fermentation by Lactic Acid Bacteria,” MS Research, University College of Technology, Osmania University, Ann Arbor, 2008.
[9] F. Bringel, “Carbamoylphosphate and Natural Auxotrophies in Lactic Acid Bacteria,” Le Lait, Vol. 78, No. 1, 1998, pp. 31-37.
[10] S. Sanchez and A. L. Demain, “Metabolic Regulation and Overproduction of Primary Metabolites,” Microbialogy and Biotechnology, Vol. 1, No. 4, 2008, pp. 283-319.
[11] M. H. N. Hoefnagel, M. J. C. Starrenburg, D. E. Martens, J. Hugenholtz, M. Kleerebezem, I. I. V. Swam, R. Bongers, H. V. Westerhoff and J. L. Snoep, “Metabolic Engineering of Lactic Acid Bacteria, the Combined Approach: Kinetic Modelling, Metabolic Control and Experimental Analysis,” Microbiology, Vol. 148, 2002, pp. 1003-1013.
[12] N. Kirilov, T. Petkova, J. Atanasova, S. Danova, I. Iliev, Y. Popov, T. Haertle and I. Ivanova, “Proteolytic Activity in Lactic Acid Bacteria from Iraq, Armenia and Bulgaria,” Biotechnology & Biotechnological Equipment, Vol. 23, 2009, pp. 643-646.
[13] K. Savijoki, H. Ingmer and P. Varmanen, “Proteolytic Systems of Lactic Acid Bacteria,” Applied Microbiology and Biotechnology, Vol. 71, No. 4, 2006, pp. 394-406.
[14] H. Konig and J. Frohlich, “Lactic Acid Bacteria,” In: H. Konig, G. Unden and J. Frohlich, Eds., Biology of Microorganisms on Grapes, in Must and in Wine, Springer, Verlag, Berlin Heidelberg, 2009, pp. 3-29.
[15] L. Axelsson, “Lactic Acid Bacteria: Classification and Physiology,” In: S. Salminen, A. von Wright and A. C. Ouwehand, Eds., Lactic Acid Bacteria: Microbiology and Functional Aspects, Marcel Dekker, New York, 2004, pp. 1-66.
[16] O. Kandler, “Carbohydrate Metabolism in Lactic Acid Bacteria,” Antonie Van Leeuwenhoek, Vol. 49, No. 3, 1983, pp. 209-224.
[17] R. P. John, K. M. Nampoothiri and A. Pandey, “Fermentative Production of Lactic Acid from Biomass: An Overview on Process Developments and Future Perspectives,” Applied Microbiology and Biotechnology, Vol. 74, No. 3, 2007, pp. 524-534.
[18] T. Bintsis, A. Vafopoulou-Mastrojiannaki, E. LitopoulouTzanetaki and R. K. Robinson, “Protease, Peptidase and Esterase Activities by Lactobacilli and Yeast Isolates from Feta Cheese Brine,” Journal of Applied Microbiology, Vol. 95, No. 1, 2003, pp. 68-77.
[19] M. Liu, J. R. Bayjanov, B. Renckens, A. Nauta and R. J. Siezen, “The Proteolytic System of Lactic Acid Bacteria Revisited: A Genomic Comparison,” BMC Genomics, Vol. 11, 2010, pp. 1-15.
[20] Q. Yuan and G. T. Furuta, “Insights into Milk Protein Allergy: Microenvironment Matters,” Gastroenterol, Vol. 124, No. 1, 2003, pp. 259-261.
[21] M. Liu, A. Nauta, C. Francke and R. J. Siezen, “Comparative Genomics of Enzymes in Flavor-Forming Pathways from Amino Acids in Lactic Acid Bacteria,” Applied and Environmental Microbiology, Vol. 74, No. 15, 2008, pp. 4590-4600.
[22] M. K. Doeven, J. Kok and B. Poolman, “Specificity and Selectivity Determinants of Peptide Transport in Lactococcus lactis and Other Microorganisms,” Molecular Microbiology, Vol. 57, 2005, pp. 640-649.
[23] S. A. Meyers, S. L. Cuppett and R. W. Hutkins, “Lipase Production by Lactic Acid Bacteria and Activity on Butter Oil,” Food Microbiology, Vol. 13, No. 5, 1996, pp. 383-389.
[24] M. Katz, R. Medina, S. Gonzalez and G. Oliver, “Esterolytic and Lipolytic Activities of Lactic Acid Bacteria Isolated from Ewes Milk and Cheese,” Journal of Food Protection, Vol. 65, 2002, pp. 1997-2001.
[25] J. Ogawa, S. Kishino, A. Ando, S. Sugimoto, K. Mihara and S. Shimizu, “Production of Conjugated Fatty Acids by Lactic Acid Bacteria,” Journal of Bioscience and Bioengineering, Vol. 100, No. 4, 2005, pp. 355-364.
[26] M. P. Taranto, M. Medici, G. Perdigon, A. P. Ruiz Holgado and G. F. Valdez, “Evidence for Hypocholesterolemic Effect of Lactobacillus reuteri in Hypercholesterolemic Mice,” Journal of Dairy Science, Vol. 81, No. 9, 1998, pp. 2336-2340.
[27] H. Chen, S. Hayek, J. R. Guzman, N. D. Gillitt, S. A. Ibrahim, C. Jobin and S. Sang, “The Microbiota Is Essential for the Generation of Black Tea Theaflavins-Derived Metabolites,” PloS One, Vol. 7, No. 12, 2012, Article ID: e51001.
[28] L. M. Cintas, M. P. Casaus, C. Herranz, I. F. Nes and P. E. Hernández, “Review: Bacteriocins of Lactic Acid Bacteria,” Food Science and Technology International, Vol. 7, 2001, pp. 281-305.
[29] A. Lonvaud-Funel, “Lactic Acid Bacteria in the Quality Improvement and Depreciation of Wine,” Antonie van Leeuwenhoek, Vol. 76, No. 1-4, 1999, pp. 317-331.
[30] D. Jussier, A. D. Morneau and R. M. de Orduna, “Effect of Simultaneous Inoculation with Yeast and Bacteria on Fermentation Kinetics and Key Wine Parameters of Cool-Climate Chardonnay,” Applied and Environmental Microbiology, Vol. 72, No. 1, 2006, pp. 221-227.
[31] A. D. Welman and I. S. Maddox, “Exopolysaccharides from Lactic Acid Bacteria: Perspectives and Challenges,” Trends in Biotechnology, Vol. 21, No. 6, 2003, pp. 269274.
[32] S. Petry, S. Furlan, M. J. Crepeau, J. Cerning and M. Desmazeaud, “Factors Affecting Exocellular Polysaccharide Production by Lactobacillus delbrueckii subsp. Bulgaricus Grown in a Chemically Defined Medium,” Applied and Environmental Microbiology, Vol. 66, No. 8, 2000, pp. 3427-3431.
[33] T. Lechiancole, A. Ricciardi and E. Parente, “Optimization of Media and Fermentation Conditions for the Growth of Lactobacillus sakei,” Annals of Microbiology, Vol. 52, 2002, pp. 257-274.
[34] E. M. Hébert, R. R. Raya and G. S. Giori, “Nutritional Requirements of Lactobacillusdelbrueckii subsp. lactis in a Chemically Defined Medium,” Currunt Microbiology, Vol. 49, No. 5, 2004, pp. 341-345.
[35] C. Foucaud, A. Francois and J. Richard, “Development of a Chemically Defined Medium for the Growth of Leuconostoc mesenteroides,” Applied and Environmental Microbiology, Vol. 63, 1997, pp. 301-304.
[36] F. Leroy, J. Verluyten and L. De Vuyst, “Functional Meat Starter Cultures for Improved Sausage Fermentation,” International Journal of Food Microbiology, Vol. 106, No. 3, 2006, pp. 270-285.
[37] L. de Vuyst and E. J. Vandamme, “Influence of the Carbon Source on Nisin Production in Lactococcus lactis subsp. lactis Batch Fermentations,” Journal of General Microbiology, Vol. 138, No. 3, 1992, pp. 571-578.
[38] L. D. Vuyst, G. Falony and F. Leroy, “Probiotics in Fermented Sausages,” Meat Science, Vol. 80, No. 1, 2008, pp. 75-78.
[39] M. M. O’ Donnell, B. M. Forde, B. Neville, P. R. Ross and P. W. O’ Toole, “Carbohydrate Catabolic Flexibility in the Mammalian Intestinal Commensal Lactobacillus ruminis Revealed by Fermentation Studies Aligned to Genome Annotations,” Microbial Cell Factories, Vol. 10, Suppl. 1, 2011, pp. 1-11.
[40] J. H. Kim, S. P. Shoemaker and D. A. Mills, “Relaxed Control of Sugar Utilization in Lactobacillus brevis,” Microbiology, Vol. 155, No. 4, 2009, pp. 1351-1359.
[41] M. Calderon, G. Loiseau and J. P. Guyot, “Nutritional Requirements and Simplified Cultivation Medium to Study Growth and Energetics of a Sourdough Lactic Acid Bacterium Lactobacillus fermentum Ogi E1 During Heterolactic Fermentation of Starch,” Journal of Applied Microbiology, Vol. 90, No. 4, 2001, pp. 508-516.
[42] N. Terrade, R. Noel, R. Couillaud and R. M. de Orduna, “A New Chemically Defined Medium for Wine Lactic Acid Bacteria,” Food Research International, Vol. 42, No. 3, 2009, pp. 363-367.
[43] B. Degeest, F. Vaningelgem and L. de Vuyst, “Microbial Physiology, Fermentation Kinetics, and Process Engineering of Heteropolysaccharide Production by Lactic Acid Bacteria,” International Dairy Journal, Vol. 11, No. 9, 2001, pp. 747-757.
[44] R. Tabasco, T. Paarup, C. Janer, C. Peliez and T. Requena, “Selective Enumeration and Identification of Mixed Cultures of Streptococcus thermophilus, Lactobacillus delbrueckii subsp. bulgaricus, L. acidophilus, L. paracasei subsp. paracasei and Bifidobacterium lactis in Fermented Milk,” International Dairy Journal, Vol. 17, No. 9, 2007, pp. 1107-1114.
[45] R. I. Dave and N. P. Shah, “Evaluation of Media for Selective Enumeration of Streptococcus thermophilus, Lactobacillus delbrueckii ssp. bulgaricus, Lactobacillus acidophilusi, and Bifidobacteria,” Journal of Dairy Science, Vol. 79, No. 9, 1996, pp. 1529-1536.
[46] M. Haros, M. Bielecka, J. Honke and Y. Sanz, “PhytateDegrading Activity in Lactic Acid Bacteria,” Polish Journal of Food and Nutrition Sciences, Vol. 58, No. 1, 2008, pp. 33-40.
[47] R. Barrangou, S. J. Lahtinen, F. Ibrahim and A. C. Ouwehand, “Genus Lactobacilli,” In: S. Lahtinne, S. Salminen, A. Von Wright and A. Ouwehand, Eds., Lactic Acid Bacteria: Microbiological and Functional Aspects, CRC Press, London, 2011, pp. 77-92.
[48] T. Moretro, B. F. Hagen and L. Axelsson, “A New, Completely Defined Medium for Meat Lactobacilli,” Journal of Applied Microbiology, Vol. 85, No. 4, 1998, pp. 715-722.
[49] Y. Sawatari, T. Hirano and A. Yokota, “Development of Food Grade Media for the Preparation of Lactobacillus plantarum Starter Culture,” The Journal of General and Applied Microbiology, Vol. 52, No. 6, 2006, pp. 349-356.
[50] J. Boekhorst, R. J. Siezen, M. C. Zwahlen, D. Vilanova, R. D. Pridmore, A. Mercenier, M. Kleerebezem, W. M. de Vos, H. Brüssow and F. Desiere, “The Complete Genomes of Lactobacillus plantarum and Lactobacillus johnsonii Reveal Extensive Differences in Chromosome Organization and Gene Content,” Microbiology, Vol. 150, No. 11, 2004, pp. 3601-3611.
[51] L. Yu, T. Lei, X. Ren, X. Pei and Y. Feng, “Response Surface Optimization of L-(+)-Lactic Acid Production Using corn steep liquor as an Alternative Nitrogen Source by Lactobacillus rhamnosus CGMCC 1466,” Biochemical Engineering Journal, Vol. 39, No. 3, 2008, pp. 496502.
[52] L. Aguirre, M. S. Garro and G. Savoy de Giori, “Enzymatic Hydrolysis of Soybean Protein Using Lactic Acid Bacteria,” Food Chemistry, Vol. 111, No. 4, 2008, pp. 976-982.
[53] J. A. Vazquez, M. P. Gonzalez and M. A. Murado, “Peptones from Autohydrolysed Fish Viscera for Nisin and Pediocin Production,” Journal of Biotechnology, Vol. 112, No. 3, 2004, pp. 299-311.
[54] I. M. Aasen, T. Moretro, T. Katla, L. Axelsson and I. Storro, “Influence of Complex Nutrients, Temperature and pH on Bacteriocin Production by Lactobacillus sakei CCUG 42687,” Applied Microbiology and Biotechnology, Vol. 53, No. 2, 2000, pp. 159-166.
[55] S. Oh, S. Rheem, J. Sim, S. Kim and Y. Baek, “Optimizing Conditions for the Growth of Lactobacillus casei YIT 9018 in Tryptone-Yeast Extract-Glucose Medium by Using Response Surface Methodology,” Applied and Environmental Microbiology, Vol. 61, No. 11, 1995, pp. 3809-3814.
[56] A. P. Desbois and V. J. Smith, “Antibacterial Free Fatty acids: Activities, Mechanisms of Action and Biotechnological Potential,” Applied Microbiology and Biotechnology, Vol. 85, No. 6, 2010, pp. 1629-1642.
[57] L. Partanen, N. Marttinen and T. Alatossava, “Fats and Fatty Acids as Growth Factors for Lactobacillus delbrueckii,” Systematic and Applied Microbiology, Vol. 24, No. 4, 2001, pp. 500-506.
[58] P. Kankaanpaa, B. Yang, H. Kallio, E. Isolauri and S. Salminen, “Effects of Polyunsaturated Fatty Acids in Growth Medium on Lipid Composition and on Physicochemical Surface Properties of lactobacilli,” Applied and Environmental Microbiology, Vol. 70, No. 1, 2004, pp. 129-136.
[59] J. K. Jenkins and P. D. Courtney, “Lactobacillus Growth and Membrane Composition in the Presence of Linoleic or Conjugated Linoleic Acid,” Canadian Journal of Microbiology, Vol. 49, No. 1, 2003, pp. 51-57.
[60] P. E. Kankaanpa, S. J. Salminen, E. Isolauri and Y. K. Lee, “The Influence of Polyunsaturated Fatty Acids on Probiotic Growth and Adhesion,” FEMS Microbiology Letters, Vol. 194, No. 2, 2001, pp. 149-153.
[61] A. Wegkamp, B. Teusink, W. M. De Vos and E. J. Smid, “Development of a Minimal Growth Medium for Lactobacillus plantarum,” Letters in Applied Microbiology, Vol. 50, No. 2010, pp. 57-64.
[62] J. J. Fitzpatrick, M. Ahrens and S. Smith, “Effect of Manganese on Lactobacillus casei Fermentation to Produce Lactic Acid from Whey Permeate,” Process Biochemistry, Vol. 36, No. 7, 2001, pp. 671-675.
[63] S. A. Ibrahim, A. Y. Alazzeh, S. S. Awaisheh, D. Song, A. Shahbazi and A. A. AbuGhazaleh, “Enhancement of αand β-Galactosidase Activity in Lactobacillus reuteri by Different Metal Ions,” Biological Trace Element Research, Vol. 136, No. 1, 2010, pp. 106-116.
[64] M. G. Macedo, C. Lacroix, N. J. Gardner and C. P. Champagne, “Effect of Medium Supplementation on Exopolysaccharide Production by Lactobacillus rhamnosus RW9595M in Whey Permeate,” International Dairy Journal, Vol. 12, No. 5, 2002, pp. 419-426.
[65] S. A. Hayek, “Use of Sweet Potato to Develop a Medium for Cultivation of Lactic Acid Bacteria,” Doctor of Philosophy Research Energy and Environmental Systems, North Carolina A&T State University, Greensboro, NC, USA, 2013.
[66] W. Y. Jeng, N. C. Wang, M. H. Lin, C. T. Lin, Y. C. Liaw, W. J. Chang, C. I. Liu, P. H. Liang and A. H. J. Wang, “Structural and Functional Analysis of Three β-Glucosidases from Bacterium Clostridium cellulovorans, fungus Trichoderma reesei and Termite Neotermes koshunensis,” Journal of Structural Biology, Vol. 173, No. 1, 2011, pp. 46-56.
[67] S. Tham, C. Chang, H. Huang, Y. Lee, T. Huang and C. C. Chang, “Biochemical Characterization of an Acid Phosphatase from Thermus thermophilus,” Bioscience, Biotechnology, and Biochemistry, Vol. 74, No. 4, 2010, pp. 727-735.
[68] H. Aqel, “Effects of pH-Values, Temperatures, Sodium Chloride, Metal Ions, Sugars and Tweens on the Acid Phosphatase Activity by Thermophilic bacillus Strains,” European Journal of Scientific Research, Vol. 75, No. 2, 2012, pp. 262-268.
[69] M. C. Palacios, M. Haros, C. M. Rosell and Y. Sanz, “Characterization of an Acid Phosphatase from Lactobacillus pentosus: Regulation and Biochemical Properties,” Journal of Applied Microbiology, Vol. 98, No. 1, 2005, pp. 229-237.
[70] N. A. Chamoles, G. Niizawa, M. Blanco, D. Gaggioli and C. Casentini, “Glycogen Storage Disease Type II: Enzymatic Screening in Dried Blood Spots on Filter Paper,” Clinica Chimica Acta, Vol. 347, No. 1-2, 2004, pp. 97102.
[71] M. Zacharof, R. Lovitt and K. Ratanapongleka, “Optimization of Growth Conditions for Intensive Propagation, Growth Development and Lactic Acid Production of Selected Strains of Lactobacilli,” Engineering Our Future: Are We up to the Challenge? Burswood Entertainment Complex, 27-30 September 2009, pp. 1830-1839.
[72] J. Y. Li, L. W. Zhang, M. Du, X. Han, H. X. Yi, C. F. Guo, Y. C. Zhang, X. Luo, Y. H. Zhang, Y. J. Shan and A. J. Hou, “Effect of Tween Series on Growth and cis-9, trans-11 Conjugated Linoleic Acid Production of Lactobacillus acidophilus F0221 in the Presence of Bile Salts,” International Journal of Molecular Science, Vol. 12, No. 12, 2011, pp. 9138-9154.
[73] L. Baati, C. Fabre-Gea, D. Auriol and P. J. Blanc, “Study of the Cryotolerance of Lactobacillus acidophilus: Effect of Culture and Freezing Conditions on the Viability and Cellular Protein Levels,” International Journal of Food Microbiology, Vol. 59, No. 3, 2000, pp. 241-247.
[74] S. A. Ibrahim, S. A. Ahmed and D. Song, “Use of Tween 80 to Enhance Bile Tolerance of Lactobacillus reuteri,” Milchwissenschaft, Vol. 64, No. 1, 2009, pp. 29-31.
[75] H. Kimoto, S. Ohmomo and T. Okamoto, “Enhancement of Bile Tolerance in Lactococci by Tween 80,” Journal of Applied Microbiology, Vol. 92, No. 1, 2002, pp. 41-46.
[76] E. Parente and C. Hill, “A Comparison of Factors Affecting the Production of Two Bacteriocins from Lactic Acid Bacteria,” Journal of Applied Bacteriology, Vol. 73, No. 4, 1992, pp. 290-298.
[77] A. L. Tang, G. Wilcox, K. Z. Walker, N. P. Shah, J. F. Ashton and L. Stojanovska, “Phytase Activity from Lactobacillus spp. in Calcium-Fortified Soymilk,” Journal of Food Science, Vol. 75, No. 6, 2010, pp. M373-M376.
[78] A. Reale, L. Mannina, P. Tremonte, A. P. Sobolev, M. Succi and E. Sorrentino, et al., “Phytate Degradation by Lactic Acid Bacteria and Yeasts During the Wholemeal Dough Fermentation: A 31P NMR Study,” Journal of Agricultural and Food Chemistry, Vol. 52, No. 20, 2004, pp. 6300-6305.
[79] K. Y. Chan and K. B. Li, “Production and Properties of Alpha-Glucosidase from Lactobacillus acidophilus,” Applied and Environmental Microbiology, Vol. 46, No. 6, 1983, pp. 1380-1387.
[80] P. M. Mahajan, K. M. Desai and S. S. Lele, “Production of Cell Membrane-Bound αand β-Glucosidase by Lactobacillus acidophilus,” Food and Bioprocess Technology, Vol. 5, No. 2, 2012, pp. 706-718.
[81] R. Akuzawa and P. F. Fox, “Acid Phosphatase in Cheese,” Animal Science Journal, Vol. 75, No. 5, 2004, pp. 385-391.
[82] M. D. Altaf, B. J. Naveena and G. Reddy, “Use of Inexpensive Nitrogen Sources and Starch for L (+) Lactic Acid Production in Anaerobic Submerged Fermentation,” Bioresource Technology, Vol. 98, No. 3, 2007, pp. 498-503.
[83] B. Djeghri-Hocine, M. Boukhemis, M. N. Zidoune and A. Amrane, “Evaluation of De-Lipidated Egg Yolk and Yeast Autolysate as Growth Supplements for Lactic Acid Bacteria Culture,” International Journal of Dairy Technology, Vol. 60, No. 4, 2007, pp. 292-296.
[84] H. Gaudreau, N. Renard, C. P. Champagne and D. Van Horn, “The Evaluation of Mixtures of Yeast and Potato Extracts in Growth Media for Biomass Production of Lactic Cultures,” Canadian Journal of Microbiology, Vol. 48, No. 7, 2002, pp. 626-634.
[85] P. Burns, G. Vinderola, F. Molinari and J. Reinheimer, “Suitability of Whey and Buttermilk for the Growth and Frozen Storage of Probiotic Lactobacilli,” International Journal of Dairy Technology, Vol. 61, No. 2, 2008, pp. 156-164.
[86] M. Ziadi, F. Rezouga, H. Bouallagui, L. Baati, N. Ben Othman, P. Thonart and M. Hamdi, “Kinetic Study of Lactococcus lactis strains (SLT6 and SLT10) Growth on PapainHydrolysed Whey,” World Journal of Microbiology and Biotechnology, Vol. 26, No. 12, 2010, pp. 2223-2230.
[87] R. P. John, K. M. Nampoothiri and A. Pandey, “SolidState Fermentation for L-lactic acid Production from Agro Wastes Using Lactobacillus delbrueckii,” Process Biochemistry, Vol. 41, No. 4, 2006, pp. 759-763.
[88] E. B. Kurbanoglu, “Enhancement of Lactic Acid Production with Ram Horn Peptone by Lactobacillus casei,” World Journal of Microbiology and Biotechnology, Vol. 20, No. 1, 2004, pp. 37-42.
[89] F. Leroy and L. De Vuyst, “Growth of the BacteriocinProducing Lactobacillus sakei Strain CTC 494 in MRS Broth Is Strongly Reduced Due to Nutrient Exhaustion: A Nutrient Depletion Model for the Growth of Lactic Acid Bacteria,” Applied and Environmental Microbiology, Vol. 67, No. 10, 2001, pp. 4407-4413.
[90] P. Raghavendra and P. M. Halami, “Screening, Selection and Characterization of Phytic Acid Degrading Lactic Acid Bacteria from Chicken Intestine,” International Journal of Food Microbiology, Vol. 133, No. 1-2, 2009, pp. 129134.
[91] M. C. Palaciosa, M. Harosa, Y. Sanzb and C. M. Rosella, “Selection of Lactic Acid Bacteria with High Phytate Degrading Activity for Application in Whole Wheat Breadmaking,” LWT-Food Science and Technology, Vol. 41, No. 1, 2008, pp. 82-92.
[92] G. Zhang, D. A. Mills and D. E. Block, “Development of Chemically Defined Media Supporting High-Cell-Density Growth of Lactococci, Enterococci, and Streptococci,” Applied and Environmental Microbiology, Vol. 75, No. 4, 2009, pp. 1080-1087.
[93] R. Hartemink, V. R. Domenech and F. M. Rombouts, “LAMVAB—A New Selective Medium for the Isolation of Lactobacilli from Faeces,” Journal of Microbiological Methods, Vol. 29, No. 2, 1997, pp. 77-84.
[94] N. Terrade and R. Mira de Orduna, “Determination of the Essential Nutrient Requirements of Wine-Related Bacteria from the Genera Oenococcus and Lactobacillus,” International Journal of Food Microbiology, Vol. 133, No. 1-2, 2009, pp. 8-13.
[95] E. A. Pfeiler and T. R. Klaenhammer, “The Genomics of Lactic Acid Bacteria,” Trends in Microbiology, Vol. 15, No. 2, 2007, pp. 546-553.
[96] E. Coton, S. Torlois, A. Bertrand and A. LonvaudFunel, “Amines Biogènes et Bactéries Lactiques Du Vin,” Bulletin de l’OIV, Vol. 72, 1999, pp. 22-35.
[97] R. Mira de Orduna, S. Q. Liu, M. L. Patchett and G. J. Pilone, “Ethyl Carbamate Precursor Citrulline Formation from Arginine Degradation by Malolactic Wine Lactic Acid Bacteria,” FEMS Microbiology Letters, Vol. 183, No. 1, 2000, pp. 31-35.
[98] S. A. Ibrahim and M. H. Daguri, “Bulk Starter Media for Mesophilic Starter Cultures: A Review,” Food and Environmental Sanitation, Vol. 16, No. 12, 1996, pp. 823-828.
[99] V. Azais-Braesco, J. L. Bresson, F. Guarner and G. Corthier, “Not All Lactic Acid Bacteria are Probiotics, …but Some are,” British Journal of Nutrition, Vol. 103, No. 7, 2010, pp. 1079-1081.
[100] N. P. Shah, “Functional Cultures and Health Benefits,” International Dairy Journal, Vol. 17, No. 11, 2007, pp. 12621277.
[101] K. Kailasapathy and J. Chin, “Survival and Therapeutic Potential of Probiotic Organisms with Reference to Lactobacillus acidophilus and Bifidibacerium spp.,” Immunology and Cell Biology, Vol. 78, No. 1, 2000, pp. 80-88.
[102] C. Martinez-Villaluenga, J. Frías, R. Gómez and C. Vidal-Valverde, “Influence of Addition of Raffinose Family Oligosaccharides on Probiotic Survival in Fermented Milk During Refrigerated Storage,” International Dairy Journal, Vol. 16, No. 7, 2006, pp. 768-774.
[103] S. K. Yeo and M. T. Liong, “Effect of Prebiotics on Viability and Growth Characteristics of Probiotics in Soymilk,” Journal of the Science of Food and Agriculture, Vol. 90, No. 2, 2010, pp. 267-275.
[104] D. Rodrigues, T. A. P. Rocha-Santos, C. I. Pereira, A. M. Gomes, F. X. Malcata and A. C. Freitas, “The Potential Effect of FOS and Inulin upon Probiotic Bacterium Performancein Curdled Milk Matrices,” LWT-Food Science and Technology, Vol. 44, 2011, pp. 100-108.
[105] M. Del Piano, L. Morelli, G. Strozzi, S. Allesina, M. Barba, F. Deidda, P. Lorenzini, M. Ballare, F. Montino, M. Orsello, M. Sartoria, E. Garelloa, S. Carmagnolaa, M. Pagliaruloa and L. Capursod, “Probiotics: From Research to Consumer,” Digestive and Liver Disease, Vol. 38, Suppl. 2, 2006, pp. S248-S255.
[106] C. P. Champagne, “19 Some Technological Challenges in the Addition of Probiotic Bacteria to Foods,” Springer Science + Business Media, New York, 2009, pp. 761-804.
[107] K. Broihier, “Sweet Potato: Tuber Delivers Top-Notch Nutrition,” Environmental Nutrition, Vol. 29, No. 10, 2006, p. 8.
[108] G. Padmaja, “Uses and Nutritional Data of Sweetpotato,” In: G. Loebenstein and G. Thottappilly, Eds., The Sweetpotato, Springer, Belgium, 2009, pp. 189-234.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.