Melanin Biosynthesis Inhibitory Activity of Compounds Isolated from Unused Parts of Ammi visinaga

Abstract

Ten compounds have been isolated from the unused parts of Ammi visinaga. The isolated compounds were identified as tetracosanoic acid (1), β-sitosterol (2), visnadine (3), khellin (4), β-sitosterol glucoside (5), norkhellol (6), khellol (7), rhamnazin (8), cimifugin (9), and cis-khellactone-3-β-glucopyranoside (10). The chemical structures of these compounds were elucidated based on spectroscopic data (NMR, UV, MS and IR spectra). This is the first report on the identification of tetracosanoic acid (1), norkhellol (6) and cimifugin (9) in the Ammi genus. The melanin biosynthesis inhibitory activities of khellin (4), khellol (7), visnadine (3), cimifugin (9), β-sitosterol (2) and β-sitosterol glucoside (5) were evaluated. Khellin (4) exhibited a potent melanin inhibitory effect compared to arbutin with less toxicity.

Share and Cite:

A. Ashour, S. El-Sharkawy, M. Amer, F. Bar, R. Kondo and K. Shimizu, "Melanin Biosynthesis Inhibitory Activity of Compounds Isolated from Unused Parts of Ammi visinaga," Journal of Cosmetics, Dermatological Sciences and Applications, Vol. 3 No. 3B, 2013, pp. 40-43. doi: 10.4236/jcdsa.2013.33A2010.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] M. S. Butler, “The Role of Natural Product Chemistry in Drug Discovery,” Journal of Natural Product, Vol. 67, No. 12, 2004, pp. 2141-2153. http://dx.doi.org/10.1021/np040106y
[2] G. M. Cragg, D. J. Newman and K. M. Snader, “Natural Products in Drug Discovery and Development,” Journal of Natural Product, Vol. 60, No. 1, 1997, pp. 52-60. http://dx.doi.org/10.1021/np9604893
[3] F. K. El-Fiky, R. P. Remmel and E. J. Staba, “Ammi Visinaga: Somatic Embryo Induction and Furanochrommone Production in Embryos, Seedlings and Plants,” Planta Medica, Vol. 55, No. 5, 1989, pp. 446-451. http://dx.doi.org/10.1055/s-2006-962061
[4] K. Günaydin and N. Beyazit, “The Chemical Investigation on the Ripe Fruits of Ammi visinaga (Lam.) Lamarck Growing in Turkey,” Natural Product Research, Vol. 18, No. 2, 2004, pp. 169-175.
http://dx.doi.org/10.1080/14786410310001608091
[5] H. Jouad, M. Maghrani and M. Eddouks, “Hypoglycemic Effect of Aqueous Extract of Ammi visnaga in Normal and Streptozotocin-Induced Diabetic Rats,” Journal of Herbal Pharmcotherapy, Vol. 2, No. 4, 2002, pp. 19-29. http://dx.doi.org/10.1080/J157v02n04_03
[6] J. Duarte, F. Perez-Vizcaino, A. Torres, A. Zarzuelo, J. Jimenez and J. Tamargo, “Vasodilator Effects of Visnagin in Isolated Rat Vascular Smooth Muscle,” European Journal of Pharmacology, Vol. 286, No. 2, 1995, pp. 115-122. http://dx.doi.org/10.1016/0014-2999(95)00418-K
[7] J. Lee, J. Jung, S. Park, S. Park, Y. Sim, S. Kim, T. Ha and H. Suh, “Anti-Inflammatory Effect of Visnagin in Lipopolysaccharide-Stimulated BV-2 Microglial Cells,” Archives of Pharmacal Research, Vol. 33, No. 11, 2010, pp. 1843-1850. http://dx.doi.org/10.1007/s12272-010-1117-1
[8] P. Vanachayangkul, K. Byer, S. Khan and V. Butterweck, “An Aqueous Extract of Ammi visnaga Fruits and Its Constituents Khellin and Visnagin Prevent Cell Damage Caused by Oxalate in Renal Epithelial Cells,” Phytomedicine, Vol. 17, No. 8-9, 2010, pp. 653-658. http://dx.doi.org/10.1016/j.phymed. 2009.10.011
[9] M. Antunes, S. Pina Dos Santos and F. Brito, “Coumarins from Ammi huntii,” Colloques—Institut National de la Recherche Agronomique, Vol. 69, 1995, pp. 305-306.
[10] Y. Selim and N. Ouf, “Anti-Inflammatory New Coumarin from the Ammi majus L.,” Organic and Medicinal Chemistry Letter, Vol. 2, 2012, pp. 1-4. http://dx.doi.org/10.1186/2191-2858-2-1
[11] R. Bencheraiet, H. Kherrab, A. Kabouche, Z. Kabouche and M. Jay, “Flavonols and Antioxidant Activity of Ammi visnaga L. (Apiaceae),” Records of Natural Products, Vol. 5, No. 1, 2011, pp. 52-55.
[12] E. T. Arung, K. Shimizu and R. Kondo, “Structure Activity Relationship of Phenyl Substituted Polyphenols from Artocarpus heterophyllus as Inhibitors of Melanin Biosynthesis in Cultured Melanoma Cell,” Chemistry & Biodiversity, Vol. 4, No. 9, 2007, pp. 2166-2171. http://dx.doi.org/ 10.1002/cbdv.200790173
[13] M. M. Amer, S. H. El-Sharkawy, F. M. Abdel Bar and A. A. Ashour, “Phytochemical Investigation of Unused Parts of Hibiscus sabdariffa,” Journal of American Science, Vol. 8, No. 12, 2012, pp. 29-35.
[14] Y. Ikeshiro, I. Mase and Y. Tomita, “Dihydropyranocoumarins from Roots of Peucedanum japonicum,” Phytochemistry, Vol. 31, No. 12, 1992, pp. 4303-4306. http://dx.doi.org/10.1016/0031-9422(92) 80463-O
[15] A. Abou-Mustafa, M. Saleh, A. Elgamal, M. Shalaby and H. Duddeck, “A Further Contribution to the γ-Pyrone Constituents of Ammi visnaga Fruits,” Planta Medica, Vol. 56, No. 1, 1990, p. 134. http://dx.doi.org/10.1055/s-2006-960912
[16] P. Agrawal, R. Thakur and M. Bansal, “Carbon-13 NMR of Flavonoids,” Elsevier Science Publishing Company Inc., New York, 1989.
[17] H. Sonnenberg, M. Kaloga, N. Eisenbach and K. Froemming, “Isolation and Characterization of an Angular-Type Dihydropyranocoumaringlycoside from the Fruits of Ammi visnaga (L.) LAM. (Apiaceae),” Zeitschrift fur Naturforschung C: Journal of Biosciences, Vol. 50, No. 9-10, 1995, pp. 729-731.
[18] P. Cao, X. Pu, S. Peng, X. Zhang and L. Ding, “Chemical Constituents from Cimicifuga foetida,” Journal of Asian Natural Products Research, Vol. 7, No. 2, 2005, pp. 145-149. http://dx.doi.org/10.1080/ 1028602042000204081
[19] R. Roelandts, “Photo (chemo) Therapy for Vitiligo,” Photodermatology, Vol. 19, No. 1, 2003, pp. 1-4. http://dx.doi.org/10.1034/j.1600-0781.2003.00003.x
[20] R. Kory, A. Townes, R. Mabe, E. Dorris and G. Meneely, “Drug Evaluation in Angina Pectoris: Khellin, Heparin, Peritrate,” American Heart Journal, Vol. 50, No. 2, 1955, pp. 308-321. http://dx.doi.org/ 10.1016/0002-8703(55)90326-4

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.