Characterization of Periodic Eigenfunctions of the Fourier Transform Operator


We generalize this result to p1,p2-periodic eigenfunctions of F on R2 and to p1,p2,p3-periodic eigenfunctions of F on R3.

Share and Cite:

C. Souza and D. Kammler, "Characterization of Periodic Eigenfunctions of the Fourier Transform Operator," American Journal of Computational Mathematics, Vol. 3 No. 4, 2013, pp. 304-312. doi: 10.4236/ajcm.2013.34040.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] R. N. Bracewell, “Fourier Analysis and Imaging,” Kluwer Academic, New York, 2003.
[2] L. Schwartz, “Theorie des Distributions,” Hermann, Paris, 1950.
[3] R. Strichartz, “A Guide to Distribution Theory and Fourier Transforms,” CRC Press, Inc., Boca Raton, 1994.
[4] B. Osgood, “The Fourier Transform and Its Applications,” Lecture Notes, Stanford University, 2005.
[5] D. W. Kammler, “A First Course in Fourier Analysis,” Prentice Hall, New Jersey, 2000.
[6] J. I. Richards and H. K. Youn, “Theory of Distributions: A Non-technical Introduction,” Cambridge University Press, Cambridge, 1990.
[7] M. J. Lighthill, “An Introduction to Fourier Analysis and Generalized Functions,” Cambridge University Press, New York, 1958.
[8] L. Auslander and R. Tolimieri, “Is Computing with the Finite Fourier Transform Pure or Applied Mathematics?” Bulletin of the American Mathematical Society, Vol. 1, 1979, pp. 847-897.
[9] J. H. McClellan and T. W. Parks, “Eigenvalue and Eigenvector Decomposition of the Discrete Fourier Transform,” IEEE Transactions on Audio and Electroacoustics, Vol. 20, No. 1, 1972, pp. 66-74.
[10] M. Senechal, “Quasicrystals and Geometry,” Cambridge University Press, New York, 1995.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.