Share This Article:

Metformin Modulates GLP-1- and GIP-Mediated Intracellular Signaling under Normoglycemic Conditions

Abstract Full-Text HTML XML Download Download as PDF (Size:883KB) PP. 263-270
DOI: 10.4236/ojemd.2013.37036    3,031 Downloads   5,622 Views   Citations


GLP-1 and GIP promote insulin secretion from pancreatic β-cells by inducing intracellular signals such as Ca2+ and cAMP. Metformin primarily acts by inhibiting glucogenesis in the liver and promoting glucose metabolism in the muscle. It is used as a concomitant drug with the incretin in the treatment of T2D. We focused on intracellular signals under various glucose concentrations and assessed the effects of metformin on incretin signaling in MIN6 β-cells. Metformin inhibited incretin-induced [Ca2+]i in the presence of 5.5 mM glucose but not 16.7 mM glucose. In accordance with low [Ca2+]i, insulin secretion from MIN6 cells declined, despite enhanced incretin-induced cAMP production. Abundant expressions of Adcy 6 and 9, which are negatively controlled by Ca2+ signals, were detected in MIN6 cells. Thus, increasing cAMP production was associated with the inhibition of Ca2+ mobilization by metformin. However, we show that metformin controls insulin secretion by inhibiting incretin-mediated [Ca2+]i under normoglycemic conditions.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

K. Shinmura, T. Negoro, S. Shimizu, G. Roncador, T. Hirano and Y. Nakano, "Metformin Modulates GLP-1- and GIP-Mediated Intracellular Signaling under Normoglycemic Conditions," Open Journal of Endocrine and Metabolic Diseases, Vol. 3 No. 7, 2013, pp. 263-270. doi: 10.4236/ojemd.2013.37036.


[1] J. B. Clifford, M. R. C. Path and R. C. Turner, “Metformin,” New England Journal of Medicine, Vol. 334, No. 9, 1996, pp. 574-579.
[2] B. Viollet, B. Guigas, J. Leclerc, S. Hebrard, L. Lantier, R. Mounier, F. Andreelli and M. Foretz, “AMP-Activated Protein Kinase in the Regulation of Hepatic Energy Metabolism: From Physiology to Therapeutic Perspectives,” Acta Physiologica, Vol. 196, No. 1, 2009, pp. 81-98.
[3] D. G. Hardie, “Neither LKB1 nor AMPK Are the Direct Targets of Metformin,” Gastroenterology, Vol. 131, No. 3, 2006, p. 973.
[4] X. G. Da Silva, I. Leclerc, A. Varadi, T. Tsuboi, K. Moule and G. A. Rutter, “Role of AMP-Activated Protein Kinase in Glucose-Stimulated Insulin Secretion and Preproinsulin Gene Expression,” Biochemical Journal, Vol. 371, No. 3, 2003, pp. 761-774.
[5] L. L. Baggio and D. J. Drucker, “Biology of Incretins: GLP-1 and GIP,” Gastroenterology, Vol. 132, No. 6, 2007, pp. 2131-2157.
[6] B. Thorens, “Expression Cloning of the Pancreatic Cell Receptor for the Gluco-Incretin Hormone Glucagon-Like Peptide 1,” Proceeding of National Academy of Sciences USA, Vol. 89, No. 18, 1992, pp. 8641-8645.
[7] T. B. Usdin, E. Mezey, D. C. Button, M. J. Brownstein and T. I. Bonner, “Gastric Inhibitory Polypeptide Receptor, a Member of the Secretin-Vasoactive Intestinal Peptide Receptor Family, Is Widely Distributed in Peripheral Organs and the Brain,” Endocrinology, Vol. 133, No. 6, 1993, pp. 2861-2870.
[8] G. G. Holz, C. A. Leech, R. S. Heller, M. Castonguay and J. F. Habener, “cAMP-Dependent Mobilization of Intracellular Ca2+ Stores by Activation of Ryanodine Receptors in Pancreatic Beta-Cells,” Journal of Biological Chemistry, Vol. 274, No. 20, 1999, pp. 14147-14156.
[9] O. Dyachok and E. Gylfe, “Ca2+-Induced Ca2+ Release via Inositol 1,4,5-Trisphosphate Receptors Is Amplified by Protein Kinase A and Triggers Exocytosis in Pancreatic Beta-Cells,” Journal of Biological Chemistry, Vol. 279, No. 44, 2004, pp. 45455-45461.
[10] R. A. Miller, Q. Chu, J. Xie, M. Foretz, B. Viollet and M. J. Birnbaum, “Biguanides Suppress Hepatic Glucagon Signalling by Decreasing Production of Cyclic AMP,” Nature, Vol. 494, No. 7436, 2013, pp. 256-260.
[11] B. Hu, H. Nakata, C. Gu, T. DeBeer and D. M. Cooper, “A Critical Interplay between Ca2+ Inhibition and Activation by Mg2+ of AC5 Revealed by Mutants and Chimeric Constructs,” Journal of Biological Chemistry, Vol. 277, No. 36, 2002, pp. 33139-33147.
[12] J. L. Guillou, H. Nakata and D. M. Cooper, “Inhibition by Calcium of Mammalian Adenylyl Cyclases,” Journal of Biological Chemistry, Vol. 274, No. 50, 1999, pp. 35539-35545.
[13] N. Masada, A. Ciruela, D. A. Macdougall and D. M. Cooper, “Distinct Mechanisms of Regulation by Ca2+/ Calmodulin of Type 1 and 8 Adenylyl Cyclases Support Their Different Physiological Roles,” Journal of Biological Chemistry, Vol. 284, No. 7, 2009, pp. 4451-4463.
[14] C. Gu and D. M. Cooper, “Calmodulin-Binding Sites on Adenylyl Cyclase Type 8,” Journal of Biological Chemistry, Vol. 274, No. 12, 1999, pp. 8012-8021.
[15] G. Kang, O. G. Chepurny, M. J. Rindler, L. Collis, Z. Chepurny, W.-H. Li, M. Harbeck, M. W. Roe and G. G. Holz, “A cAMP and Ca2+ Coincidence Detector in Support of Ca2+-Induced Ca2+ Release in Mouse Pancreatic b Cells,” Journal of Physiology, Vol. 566, No. 1, 2005, pp. 173-188.
[16] N. Ozaki, T. Shibasaki, Y. Kashima, T. Miki, K. Takahashi, H. Ueno, Y. Sunaga, H. Yano, Y. Matsuura, T. Iwanaga, Y. Takai and S. Seino, “cAMP-GEF2 Is a Direct Target of cAMP in Regulated Exocytosis,” Nature Cell Biology, Vol. 2, No. 11, 2000, pp. 805-811.
[17] G. Kang, O. G. Chepurny and G. G. Holtz, “cAMP-Re-gulated Guanine Nucleotide Exchange Factor 2 (Epac2) Mediates Ca2+-Induced Ca2+ Release in INS-1 Pancreatic Cells,” Journal of Physiology, Vol. 536, No. 2, 2001, pp. 375-385.
[18] J. Miyazaki, K. Araki, E. Yamato, H. Ikegami, T. Asano, Y. Shibasaki, Y. Oka and K. Yamamura, “Establishment of a Pancreatic b Cell Line that Retains Glucose Inducible Insulin Secretion,” Endocrinology, Vol. 127, No. 1, 1990, pp. 126-132.
[19] T. Hiroi, T. Wajima, T. Negoro, M. Ishii, Y. Nakano, Y. Kiuchi, Y. Mori and S. Shimizu, “Neutrophil TRPM2 Channels Are Implicated in the Exacerbation of Myocardial Ischemia/Reperfusion Injury,” Cardiovascular Research, Vol. 97, No. 2, 2013, pp. 271-281.
[20] M. H. Sherman, A. I. Kuraishy, C. Deshpande, J. S. Hong, N. A. Cacalano, R. A. Gatti, J. P. Manis, M. A. Damore, M. Pelleqrini and M. A. Teitell, “AID-Induced Genotoxic Stress Promotes B Cell Differentiation in the Germinal Center via ATM and LKB1 Signaling,” Molecular Cell, Vol. 39, No. 6, 2010, pp. 873-885.
[21] J. Lu, J. Ji, H. Meng, D. Wang, B. Jiang, L. Liu, E. Randell, K. Adeli and Q. H. Meng, “The Protective Effect and Underlyin Mechanism of Metformin on Neointima Formation in Fructose-Induced Insulin Resistant Rats,” Cardiovascular Diabetology, Vol. 12, 2013, p. 58.
[22] Y. Ishibashi, T. Matsui, M. Takeuchi and S. Yamagishi, “Metformin Inhibits Advanced Glycation End Products (AGEs)-Induced Growth and VEGF Expression in MCF-7 Breast Cancer Cells by Suppressing AGEs Receptor Expression via AMP-Activated Protein Kinase,” Hormone and Metabolic Research, Vol. 45, No. 5, 2013, pp. 387-390.
[23] A. Maida, B. J. Lamont and C. D. Drucker, “Metformin Regulates the Incretin Receptor Axis via a Pathway Dependent on Peroxisome Proliferator-Activated Receptor in Mice,” Diabetologia, Vol. 54, No. 2, 2011, pp. 339-349.
[24] J. Selway, R. Rigatti, N. Storey, J. Lu, G. B. Willars and T. P. Herbert, “Evidence that Ca2+ within the Microdomain of the L-Typer Voltage Gated Ca2+ Channel Activates ERK in MIN6 Cells in Response to Glucagon-Like Peptide-1,” PLoS One, Vol. 7, No. 3, 2012, p. e33004.
[25] F. A. Antoni, A. A. Sosunov, A. Haunso, J. M. Paterson and J. Simpson, “Short-Term Plasticity of Cyclic Adenosine 3',5'-Monophosphate Signaling in Anterior Pituitary Corticotrope Cells: The Role of Adenylyl Cyclase Isotypes,” Molecular Endocrinology, Vol. 17, No. 4, 2003, pp. 692-703.
[26] T. Kitaguchi, O. Manami, Y. Wada, T. Tsuboi and A. Miyawaki, “Extracellular Calcium Influx Activates Adenylate Cyclase 1 and Insulin Secretion in MIN6 Cells,” Biochemical Journal, Vol. 450, No. 2, 2013, pp. 365-373.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.