Assessment of Soil C and N Stocks and Fractions across 11 European Soils under Varying Land Uses

DOI: 10.4236/ojss.2013.37035   PDF   HTML     4,492 Downloads   7,288 Views   Citations


In this study, we measured the stocks and pool sizes of soil organic carbon (SOC) and total soil nitrogen (TN), and their natural 13C and 15N abundance across a wide range of temperate European ecosystems. The objectives were to examine any distinct isotope patterns with land use or climate, and how C and N in these different ecosystems are distributed among soil organic matter (SOM) fractions to better predict soil C and N dynamics and longer term persistence. Soils were sampled to 30 cm depth at 11 sites of the Nitro Europe (NEU) network and included four forests, three grasslands and four croplands. Surface soil samples were fractionated using a combined size-density fractionation protocol separating light (LF) from heavy particulate organic matter (hPOM) by density and silt-from-clay-associated SOM by size. Down-profile natural abundance 15N patterns pointed towards a closed N cycle in the forest sites, while 13C patterns suggested differences in plant water use efficiency across the C3 grassland sites. The forests and grassland sites stored the majority of surface SOC and TN in the LF and hPOM pools. Sustained sequestration of C and N in these rather labile pools will rely on management practices that minimize soil disturbance and increase C input. We also found that the mineral fraction (silt and clay) in the cropland soils stored less C and N per unit of fraction mass compared to the forests and grasslands, which points towards a lower mineral-OM stabilization efficiency of cropland soils. Finally, our study revealed total POM (LF plus hPOM) as a strong predictor of SOC and TN differences, particularly among the non-cropped sites. This study shows that these sites, independent of soil type and climate, store a large fraction of C and N in POM pools that are particularly vulnerable to soil disturbance such as caused by land use change.

Share and Cite:

K. Denef, I. Galdo, A. Venturi and M. Cotrufo, "Assessment of Soil C and N Stocks and Fractions across 11 European Soils under Varying Land Uses," Open Journal of Soil Science, Vol. 3 No. 7, 2013, pp. 297-313. doi: 10.4236/ojss.2013.37035.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] [1] N. H. Batjes, “Total Carbon and Nitrogen in the Soils of the World,” European Journal of Soil Science, Vol. 47, No. 2, 1996, pp. 151-163.
[2] R. F. Follett, C. E. Stewart, E. G. Pruessner and J. M. Kimble, “Effects of Climate Change on Soil Carbon and Nitrogen Storage in the US Great Plains,” Journal of Soil and Water Conservation, Vol. 67, No. 5, 2012, pp. 331342.
[3] E. A. Davidson, S. E. Trumbore and R. Amundson, “Biogeochemistry—Soil Warming and Organic Carbon Content,” Nature, Vol. 408, No. 6814, 2000, pp. 789-790.
[4] R. T. Conant, S. M. Ogle, E. A. Paul and K. Paustian, “Measuring and Monitoring Soil Organic Carbon Stocks in Agricultural Lands for Climate Mitigation,” Frontiers in Ecology and the Environment, Vol. 9, No. 3, 2011, pp. 169-173.
[5] S. Sleutel, S. De Neve, G. Hofman, P. Boeckx, D. Beheydt, O. Van Cleemput, I. Mestdagh, P. Lootens, L. Carlier, N. Van Camp, H. Verbeeck, I. Vande Walle, R. Samson, N. Lust and R. Lemeur, “Carbon Stock Changes and Carbon Sequestration Potential of Flemish Cropland Soils,” Global Change Biology, Vol. 9, No. 8, 2003, pp. 11931203.
[6] S. Spencer, S. M. Ogle, F. J. Breidt, J. Goebel and K. Paustian, “Designing a National Soil Carbon Monitoring Network to Support Climate Change Policy: A Case Example for US Agricultural Lands,” Greenhouse Gas Management & Measurement, Vol. 1, No. 3-4, 2011, pp. 167-178.
[7] W. J. Parton, D. S. Ojima, C. V. Cole and D. S. Schimel, “A General Model for Soil Organic Matter Dynamics: Sensitivity to Litter Chemistry, Texture and Management,” Soil Science Society of America Journal, Vol. 39, 1994, pp. 147-167.
[8] W. J. Parton, M. Hartman, D. Ojima and D. Schimel, “Daycent and Its Land Surface Submodel: Description and Testing,” Global and Planetary Change, Vol. 19, No. 1-4, 1998, pp. 35-48.
[9] K. Coleman, D. S. Jenkinson, G. J. Crocker, P. R. Grace, J. Klir, M. Korschens, P. R. Poulton and D. D. Richter, “Simulating Trends in Soil Organic Carbon in Long-Term Experiments Using RothC-26.3,” Geoderma, Vol. 81, No. 1-2, 1997, pp. 29-44.
[10] C. S. Li, “Modeling Trace Gas Emissions from Agricultural Ecosystems,” Nutrient Cycling in Agroecosystems, Vol. 58, No. 1-3, 2000, pp. 259-276.
[11] S. M. Ogle, F. J. Breidt, M. Easter, S. Williams, K. Killian and K. Paustian, “Scale and Uncertainty in Modeled Soil Organic Carbon Stock Changes for US Croplands Using a Process-Based Model,” Global Change Biology, Vol. 16, No. 2, 2010, pp. 810-822.
[12] E. D. Schulze, S. Luyssaert, P. Ciais, A. Freibauer, I. A. Janssens, J. F. Soussana, P. Smith, J. Grace, I. Levin, B. Thiruchittampalam, M. Heimann, A. J. Dolman, R. Valentini, P. Bousquet, P. Peylin, W. Peters, C. Rodenbeck, G. Etiope, N. Vuichard, M. Wattenbach, G. J. Nabuurs, Z. Poussi, J. Nieschulze, J. H. Gash and T. Carbo Europe, “Importance of Methane and Nitrous Oxide for Europe’s Terrestrial Greenhouse-Gas Balance,” Nature Geoscience, Vol. 2, No. 12, 2009, pp. 842-850.
[13] M. W. I. Schmidt, M. S. Torn, S. Abiven, T. Dittmar, G. Guggenberger, I. A. Janssens, M. Kleber, I. Kogel-Knabner, J. Lehmann, D. A. C. Manning, P. Nannipieri, D. P. Rasse, S. Weiner and S. E. Trumbore, “Persistence of Soil Organic Matter as an Ecosystem Property,” Nature, Vol. 478, No. 7367, 2011, pp. 49-56.
[14] J. Six and J. D. Jastrow, “Organic Matter Turnover,” In: R. Lal, Ed., Encyclopedia of Soil Science, Marcel Dekker, New York, 2002, pp. 936-942.
[15] P. Smith, “How Long before a Change in Soil Organic Carbon Can Be Detected?” Global Change Biology, Vol. 10, No. 11, 2004, pp. 1878-1883.
[16] I. Del Galdo, J. Six, A. Peressotti and M. F. Cotrufo, “Assessing the Impact of Land-Use Change on Soil C Sequestration in Agricultural Soils by Means of Organic Matter Fractionation and Stable C Isotopes,” Global Change Biology, Vol. 9, No. 8, 2003, pp. 1204-1213.
[17] K. Denef, J. Six, R. Merckx and K. Paustian, “Carbon Sequestration in Microaggregates of No-Tillage Soils with Different Clay Mineralogy,” Soil Science Society of America Journal, Vol. 68, No. 6, 2004, pp. 1935-1944.
[18] J. Leifeld and I. Kogel-Knabner, “Soil Organic Matter Fractions as Early Indicators for Carbon Stock Changes under Different Land-Use?” Geoderma, Vol. 124, No. 1-2, 2005, pp. 143-155.
[19] J. Six, E. T. Elliott and K. Paustian, “Soil Macroaggregate Turnover and Microaggregate Formation: A Mechanism for C Sequestration under No-Tillage Agriculture,” Soil Biology & Biochemistry, Vol. 32, No. 14, 2000, pp. 20992103.
[20] E. G. Gregorich and M. H. Beare, “Physically Uncomplexed Organic Matter,” In: M. R. Carter and E. G. Gregorich, Eds., Soil Sampling and Methods of Analysis, CRC Press/Taylor & Francis, Boca Raton, 2008, pp. 607616.
[21] C. E. Stewart, R. F. Follett, J. Wallace and E. G. Pruessner, “Impact of Biosolids and Tillage on Soil Organic Matter Fractions: Implications of Carbon Saturation for Conservation Management in the Virginia Coastal Plain,” Soil Science Society of America Journal, Vol. 76, No. 4, 2012, pp. 1257-1267.
[22] C. A. Cambardella and E. T. Elliott, “Particulate Soil Organic-Matter Changes across a Grassland Cultivation Sequence,” Soil Science Society of America Journal, Vol. 56, No. 3, 1992, pp. 777-783.
[23] A. S. Grandy and J. C. Neff, “Molecular C Dynamics Downstream: The Biochemical Decomposition Sequence and Its Impact on Soil Organic Matter Structure and Function,” Science of the Total Environment, Vol. 404, No. 2-3, 2008, pp. 297-307.
[24] M. Helfrich, B. Ludwig, P. Buurman and H. Flessa, “Effect of Land Use on the Composition of Soil Organic Matter in Density and Aggregate Fractions as Revealed by Solid-State C-13 NMR Spectroscopy,” Geoderma, Vol. 136, No. 1-2, 2006, pp. 331-341.
[25] P. Sollins, C. Swanston, M. Kleber, T. Filley, M. Kramer, S. Crow, B. A. Caldwell, K. Lajtha and R. Bowden, “Organic C and N Stabilization in a Forest Soil: Evidence from Sequential Density Fractionation,” Soil Biology & Biochemistry, Vol. 38, No. 11, 2006, pp. 3313-3324.
[26] J. S. Clemente, A. J. Simpson and M. J. Simpson, “Association of Specific Organic Matter Compounds in Size Fractions of Soils under Different Environmental Controls,” Organic Geochemistry, Vol. 42, No. 10, 2011, pp. 1169-1180.
[27] K. F. Nadelhoffer and B. Fry, “Controls on Natural N-15 and C-13 Abundances in Forest Soil Organic Matter,” Soil Science Society of America Journal, Vol. 52, No. 6, 1988, pp. 1633-1640.
[28] J. Balesdent, A. Mariotti and B. Guillet, “Natural 13C Abundance as a Tracer for Studies of Soil Organic Matter Dynamics,” Soil Biology & Biochemistry, Vol. 19, No. 1, 1987, pp. 25-30.
[29] A. Diochon and L. Kellman, “Natural Abundance Measurements of (13)C Indicate Increased Deep Soil Carbon Mineralization after Forest Disturbance,” Geophysical Research Letters, Vol. 35, No. 14, 2008.
[30] J. R. Ehleringer, N. Buchmann and L. B. Flanagan, “Carbon Isotope Ratios in Belowground Carbon Cycle Processes,” Ecological Applications, Vol. 10, No. 2, 2000, pp. 412-422.[0412:CIRIBC]2.0.CO;2
[31] P. Hogberg, L. Hogbom, H. Schinkel, M. Hogberg, C. Johannisson and H. Wallmark, “N-15 Abundance of Surface Soils, Roots and Mycorrhizas in Profiles of European Forest Soils,” Oecologia, Vol. 108, No. 2, 1996, pp. 207214.
[32] K. J. Nadelhoffer and B. Fry, “Nitrogen Isotope Studies in Forest Ecosystems,” In: K. Lajtha and R. Michener, Eds., Stable Isotopes in Ecology and Environmental Science, Blackwell Scientific Publications, Boston, 1994, pp. 23-44.
[33] P. Hogberg, “Tansley Review No 95 N-15 Natural Abundance in Soil-Plant Systems,” New Phytologist, Vol. 137, No. 2, 1997, pp. 179-203.
[34] M. A. Sutton, E. Nemitz, J. W. Erisman, C. Beier, K. B. Bahl, P. Cellier, W. de Vries, F. Cotrufo, U. Skiba, C. Di Marco, S. Jones, P. Laville, J.F. Soussana, B. Loubet, M. Twigg, D. Famulari, J. Whitehead, M.W. Gallagher, A. Neftel, C. R. Flechard, B. Herrmann, P. L. Calanca, J. K. Schjoerring, U. Daemmgen, L. Horvath, Y. S. Tang, B. A. Emmett, A. Tietema, J. Penuelas, M. Kesik, N. Brueggemann, K. Pilegaard, T. Vesala, C. L. Campbell, J. E. Olesen, U. Dragosits, M. R. Theobald, P. Levy, D. C. Mobbs, R. Milne, N. Viovy, N. Vuichard, J. U. Smith, P. Smith, P. Bergamaschi, D. Fowler and S. Reis, “Challenges in Quantifying Biosphere-Atmosphere Exchange of Nitrogen Species,” Environmental Pollution, Vol. 150, No. 1, 2007, pp. 125-139.
[35] U. Skiba, J. Drewer, Y. S. Tang, N. van Dijk, C. Helfter, E. Nemitz, D. Famulari, J. N. Cape, S. K. Jones, M. Twigg, M. Pihlatie, T. Vesala, K. S. Larsen, M. S. Carter, P. Ambus, A. Ibrom, C. Beier, A. Hensen, A. Frumau, J. W. Erisman, N. Bruggemann, R. Gasche, K. ButterbachBahl, A. Neftel, C. Spirig, L. Horvath, A. Freibauer, P. Cellier, P. Laville, B. Loubet, E. Magliulo, T. Bertolini, G. Seufert, M. Andersson, G. Manca, T. Laurila, M. Aurela, A. Lohila, S. Zechmeister-Boltenstern, B. Kitzler, G. Schaufler, J. Siemens, R. Kindler, C. Flechard and M. A. Sutton, “Biosphere-Atmosphere Exchange of Reactive Nitrogen and Greenhouse Gases at the NitroEurope Core Flux Measurement Sites: Measurement Strategy and First Data Sets,” Agriculture Ecosystems & Environment, Vol. 133, No. 3-4, 2009, pp. 139-149.
[36] G. Schaufler, B. Kitzler, A. Schindlbacher, U. Skiba, M. A. Sutton and S. Zechmeister-Boltenstern, “Greenhouse Gas Emissions from European Soils under Different Land Use: Effects of Soil Moisture and Temperature,” European Journal of Soil Science, Vol. 61, No. 5, 2010, pp. 683-696.
[37] K. Pilegaard, T. N. Mikkelsen, C. Beier, N. O. Jensen, P. Ambus and H. Ro-Poulsen, “Field Measurements of Atmosphere-Biosphere Interactions in a Danish Beech Forest,” Boreal Environment Research, Vol. 8, No. 4, 2003, pp. 315-333.
[38] D. Harris, W. R. Horwath and C. van Kessel, “Acid Fumigation of Soils to Remove Carbonates Prior to Total Organic Carbon or Carbon-13 Isotopic Analysis,” Soil Science Society of America Journal, Vol. 65, No. 6, 2001, pp. 1853-1856.
[39] F. Marzaioli, C. Lubritto, I. Del Galdo, A. D’Onofrio, M. F. Cotrufo and F. Terrasi, “Comparison of Different Soil Organic Matter Fractionation Methodologies: Evidences from Ultrasensitive (14)C Measurements,” Nuclear Instruments & Methods in Physics Research Section BBeam Interactions with Materials and Atoms, Vol. 268, No. 7-8, 2010, pp. 1062-1066.
[40] S. De Gryze, J. Six, K. Paustian, S. J. Morris, E. A. Paul and R. Merckx, “Soil Organic Carbon Pool Changes Following Land-Use Conversions,” Global Change Biology, Vol. 10, No. 7, 2004, pp. 1120-1132.
[41] A. J. Franzluebbers. “Depth Distribution of Soil Organic Carbon as a Signature of Soil Quality,” Proceedings of the 19th World Congress of Soil Science: Soil Solutions for a Changing World. Symposium 4.1.1 Valuing the Soil’s Natural Capital, Brisbane, 2010, pp. 1-4.
[42] R. B. Harrison, P. W. Footen and B. D. Strahm, “Deep Soil Horizons: Contribution and Importance to Soil Carbon Pools and in Assessing Whole-Ecosystem Response to Management and Global Change,” Forest Science, Vol. 57, No. 1, 2011, pp. 67-76.
[43] M. Wiesmeier, P. Sporlein, U. Geuss, E. Hangen, S. Haug, A. Reischl, B. Schilling, M. von Lutzow and I. KogelKnabner, “Soil Organic Carbon Stocks in Southeast Germany (Bavaria) as Affected by Land Use, Soil Type and Sampling Depth,” Global Change Biology, Vol. 18, No. 7, 2012, pp. 2233-2245.
[44] K. Pilegaard, U. Skiba, P. Ambus, C. Beier, N. Bruggemann, K. Butterbach-Bahl, J. Dick, J. Dorsey, J. Duyzer, M. Gallagher, R. Gasche, L. Horvath, B. Kitzler, A. Leip, M. K. Pihlatie, P. Rosenkranz, G. Seufert, T. Vesala, H. Westrate and S. Zechmeister-Boltenstern, “Factors Controlling Regional Differences in Forest Soil Emission of Nitrogen Oxides (NO and N2O),” Biogeosciences, Vol. 3, No. 4, 2006, pp. 651-661.
[45] A. S. Bateman, S. D. Kelly and T. D. Jickells, “Nitrogen Isotope Relationships between Crops and Fertilizer: Implications for Using Nitrogen Isotope Analysis as an Indicator of Agricultural Regime,” Journal of Agricultural and Food Chemistry, Vol. 53, No. 14, 2005, pp. 57605765.
[46] S. Ranucci, T. Bertolini, L. Vitale, P. Di Tommasi, L. Ottaiano, M. Oliva, U. Amato, A. Fierro and V. Magliulo, “The Influence of Management and Environmental Variables on Soil N2O Emissions in a Crop System in Southern Italy,” Plant and Soil, Vol. 343, No. 1-2, 2011, pp. 83-96.
[47] D. Huygens, K. Denef, R. Vandeweyer, R. Godoy, O. Van Cleemput and P. Boeckx, “Do Nitrogen Isotope Patterns Reflect Microbial Colonization of Soil Organic Matter Fractions?” Biology and Fertility of Soils, Vol. 44, No. 7, 2008, pp. 955-964.
[48] K. T. Hubick, G. D. Farquhar and R. Shorter, “Correlation between Water Use Efficiency and Carbon Isotope Discrimination in Diverse Peanut (Arachis) Germplasm,” Australian Journal of Plant Physiology, Vol. 13, No. 6, 1986, pp. 803-816.
[49] K. Denef, A. F. Plante and J. Six, “Characterization of Soil Organic Matter,” In: W. L. Kutsch, M. Bahn and A. Heinemeyer, Eds., Soil Carbon Dynamics: An Integrated Methodology, Cambridge University Press, Cambridge, 2009, pp. 91-126.
[50] A. J. Franzluebbers and J. A. Stuedemann, “Particulate and Non-Particulate Fractions of Soil Organic Carbon under Pastures in the Southern Piedmont USA,” Environmental Pollution, Vol. 116, No. S1, 2002, pp. S53-S62.
[51] C. Ammann, C. Spirig, J. Leifeld and A. Neftel, “Assessment of the Nitrogen and Carbon Budget of Two Managed Temperate Grassland Fields,” Agriculture Ecosystems & Environment, Vol. 133, No. 3-4, 2009, pp. 150162.
[52] M. R. Carter and E. G. Gregorich, “Carbon and Nitrogen Storage by Deep-Rooted Tall Fescue (Lolium Arundinaceum) in the Surface and Subsurface Soil of a Fine Sandy Loam in Eastern Canada,” Agriculture Ecosystems & Environment, Vol. 136, No. 1-2, 2010, pp. 125-132.
[53] J. Hassink, “The Capacity of Soils to Preserve Organic C and N by Their Association with Clay and Silt Particles,” Plant and Soil, Vol. 191, No. 1, 1997, pp. 77-87.
[54] J. Six, R. T. Conant, E. A. Paul and K. Paustian, “Stabilization Mechanisms of Soil Organic Matter: Implications for C-Saturation of Soils,” Plant and Soil, Vol. 241, No. 2, 2002, pp. 155-176.
[55] C. E. Stewart, K. Paustian, R. T. Conant, A. F. Plante and J. Six, “Soil Carbon Saturation: Evaluation and Corroboration by Long-Term Incubations,” Soil Biology & Biochemistry, Vol. 40, No. 7, 2008, pp. 1741-1750.
[56] H. Chung, K. J. Ngo, A. F. Plante and J. Six, “Evidence for Carbon Saturation in a Highly Structured and Organic-Matter-Rich Soil,” Soil Science Society of America Journal, Vol. 74, No. 1, 2010, pp. 130-138.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.