Spectral Model for Soybean Yield Estimate Using MODIS/EVI Data


Attaining reliable and timely agricultural estimates is very important everywhere, and in Brazil, due to its characteristics, this is especially true. In this study, estimations of crop production were made based on the temporal profiles of the Enhanced Vegetation Index (EVI) obtained from Moderate Resolution Imaging Spectroradiometer (MODIS) images. The objective was to evaluate the coupled model (CM) performance of crop area and crop yield estimates based solely on MODIS/EVI as input data in Rio Grande do Sul State, which is characterized by high variability in seasonal soybean yields, due to different crop development conditions. The resulting production estimates from CM were compared to official agricultural statistics of Brazilian Institute of Geography and Statistics (IBGE) and the National Company of Food Supply (CONAB) at different levels from 2000/2001 to 2010/2011 crop years. Results obtained with CM indicate that its application is able to generate timely production estimates for soybean both at municipality and local levels. Validation estimates with CM at State level obtained R2 = 0.95. Combining all cropping years at municipality level, estimates were highly correlated to official statistics from IBGE, with R2 = 0.91 and RMSD = 10,840 tons. Spatially interpolated comparisons of yield maps obtained from the CM estimates and IBGE data also showed visual similarity in their spatial distribution. Local level comparisons were performed and presented R2 = 0.95. Implications of this work point out that time-series analysis of production estimates are able to provide anticipated spatial information prior to the soybean harvest.

Share and Cite:

A. Gusso, J. Ducati, M. Veronez, D. Arvor and L. Silveira, "Spectral Model for Soybean Yield Estimate Using MODIS/EVI Data," International Journal of Geosciences, Vol. 4 No. 9, 2013, pp. 1233-1241. doi: 10.4236/ijg.2013.49117.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] A. Gusso, “Integracao de imagens NOAA/AVHRR: Rede de Cooperacao Para Monitoramento Nacional da Safra de Soja,” Revista Ceres, Vol. 60, No. 2, 2013, pp. 194-204.
[2] D. C. Figueiredo, “Projeto GeoSafras: Aperfeicoamento do Sistema de Previsao de Safras da Conab,” Revista de Política Agrícola, Vol. 14, 2005, pp. 110-120.
[3] A. Gusso, A. R. Formaggio, R. Rizzi, M. Adami and B. T. F. Rudorff. “Soybean Crop Area Estimation by MODIS/ EVI Data,” Pesquisa Agropecuária Brasileira, Vol. 47, No. 3, 2012, pp. 425-435.
[4] J. A. Johann, J. V. Rocha, D. G. Duft and R. A. C. Lamparelli, “Estimativa de áreas com Culturas de Verao no Paraná, por Meio de Imagens Multitemporais EVI/Modis,” Pesquisa Agropecuária Brasileira, Vol. 47, No. 9, 2012, pp. 1295-1306.
[5] R. Rizzi and B. T. F. Rudorff, “Imagens do Sensor MODIS Associadas a um Modelo Agronomicopara Estimar a Produtividade de Soja,” Pesquisa Agropecuária Brasileira, Vol. 42, No. 1, 2007, pp. 73-80.
[6] E. D. Assad, F. R. Marin, S. R. Evangelista, F. G. Pilau, J. R. B. Farias, H. S. Pintoand and J. Zullo, “Sistema de Previsao da Safra de Soja para o Brasil,” Pesquisa Agropecuária Brasileira, Vol. 42, No. 5, 2007, pp. 615-625.
[7] E. E. Sano, L. G. Ferreira, G. P. Asner and E. T. Steinke, “Spatial and Temporal Probabilities of Obtaining Cloud-Free Landsat Images over the Brazilian Tropical Savanna,” International Journal of Remote Sensing, Vol. 28, No. 12, 2007, pp. 2739-2752.
[8] L. M. Sugawara, B. F. T. Rudorff and M. Adami, “Viabilidade de Uso de Imagens do Landsat em Mapeamento de área Cultivada com Soja no Estado do Paraná,” Pesquisa Agropecuária Brasileira, Vol. 43, No. 12, 2008, pp. 1763-1768.
[9] J. C. D. M. Esquerdo, J. Zullo and J. F. G. Antunes, “Use of NDVI/AVHRR Time-Series Profiles for Soybean Crop Monitoring in Brazil,” International Journal of Remote Sensing, Vol. 32, No. 13, 2011, pp. 3711-3727.
[10] R. W. De Melo, D. C. Fontana, M. A. Berlato and J. R. Ducati, “An Agrometeorologica-Spectral Model to Estimate Soybean Yield, Applied to Southern Brazil,” International Journal of Remote Sensing, Vol. 29, No. 14, 2008, pp. 4013-4028.
[11] D. A. Sims, A. F. Rahman, V. D. Cordova, B. Z. El-Masri, D. D. Baldocchi, P. V. Bolstad, L. B. Flanagan, A. H. Goldstein, D. Y. Hollinger, L. Misson, R. K. Monson, W. C. Oechel, H. P. Schmid, S. C. Wofsy and L. Xu, “On the Use of MODIS EVI to Assess Gross Primary Productivity of North American Ecosystems,” Journal of Geophysical Research, Vol. 111, No. G4, 2006, pp. 1-16.
[12] P. C. Doraiswamy, T. R. Sinclair, S. Hollinger, B. Akhmedov, A. Stern and J. Prueger, “Application of MODIS Derived Parameters for Regional Crop Yield Assessment,” Remote Sensing of Environment, Vol. 97, No. 2, 2005, pp. 192-202.
[13] W. T. Liu and F. Kogan, “Monitoring Brazilian Soybean Production Using NOAA/AVHRR Based Vegetation Indices,” International Journal of Remote Sensing, Vol. 23, No. 3, 2002, pp. 1161-1180.
[14] D. C. Fontana, E. Weber, J. R. Ducati, M. A. Berlato, L. A. Guasselli and A. Gusso, “Monitoramento da Cultura da Soja no Centro-Sul do Brasil Durante La Nina de 1998/2000,” Revista Brasileira de Agrometeorologia, Vol. 10, No. 6, 2002, pp. 343-351.
[15] D. B. Lobell and G. P. Asner, “Cropland Distributions from Temporal Unmixing of MODIS Data,” Remote Sensing of Environment, Vol. 93, No. 3, 2004, pp. 412-422.
[16] C. O. Justice, J. R. G. Townshend, E. F. Vermote, E. Masuoka, R. E. Wolfe, N. Saleous, D. P. Roy and J. T. Morisette, “An Overview of MODIS Land Data Processing and Product Status,” Remote Sensing of Environment, Vol. 83, No. 1-2, 2002, pp. 3-15.
[17] B. D. Wardlow, S. L. Egbert and J. H. Kastens, “Analysis of Time-Series MODIS 250m Vegetation Index Data for Crop Classification in the US Central Great Plains,” Remote Sensing of Environment, Vol. 108, No. 3, 2007, pp. 290-310. http://dx.doi.org/10.1016/j.rse.2006.11.021
[18] A. Gusso and J. R. Ducati, “Algorithm for Soybean Classification Using Medium Resolution Satellite Images,” Remote Sensing, Vol. 4, No. 10, 2012, pp. 3127-3142.
[19] D. Arvor, M. Jonathan, M. S. P. Meirelles, V. Dubreuil and L. Durieux, “Classification of MODIS EVI Time Series for Crop Mapping in the State of Mato Grosso, Brazil,” International Journal of Remote Sensing, Vol. 29, No. 22, 2011, pp. 1-25.
[20] R. Rizzi and B. F. T. Rudorff, “Estimativa da área de Plantada com Soja no Rio Grande do Sul por Meio de Imagens Landsat,” Revista Brasileira de Cartografia, Vol. 57, No. 3, 2005, pp. 226-234.
[21] R. D. V. Epiphanio, A. R. Formaggio, B. T. F. Rudorff, E. E. Maeda and A. J. B. Luiz, “Estimating Soybean Crop Areas Using Spectral-Temporal Surfaces Derived from MODIS Images in Mato Grosso, Brazil,” Pesquisa Agropecuária Brasileira, Vol. 45, No. 1, 2010, pp. 72-80.
[22] D. C. Morton, R. S. DeFries, Y. E. Shimabukuro, L. O. Anderson, E. Arai, F. D.-B. Espirito-Santo, R. Freitas and J. Morissete, “Cropland Expansion Changes Deforestation Dynamics in the Southern Brazilian Amazon,” Proceedings of the National Academy of Sciences, Vol. 103, No. 39, 2006, pp. 14637-14641.
[23] M. N. Macedo, R. S. DeFries, D. C. Morton, C. M. Stickler, G. L. Glaford and Y. E. Shimabukuro, “Decoupling of Deforestation and Soy Production in the Southern Amazon during the late 2000s,” Proceedings of the National Academy of Sciences, Vol. 109, No. 4, 2006, pp. 1341-1346. http://dx.doi.org/10.1073/pnas.1111374109
[24] K. Pittman, M. C. Hansen, I. Becker-Reshef, P. V. Potapov and C. O. Justice, “Estimating Global Cropland Extent with Multi-Year MODIS Data,” Remote Sensing, Vol. 2, No. 7, 2010, pp. 1844-1863.
[25] D. B. Ferreira,“Análise da Variabilidade Climática e Suas Consequencias Para a Produtividade da Soja na Regiao sul do Brasil,” Ph.D. Thesis, INPE, Sao José dos Campos, 2010.
[26] W. Schlenker and M. Roberts, “Nonlinear Temperature Effects Indicate Severe Damages to US Crop Yields under Climate Change,” Proceedings of the National Academy of Sciences. Vol. 106, No. 37, 2009, pp. 15594-15598. http://dx.doi.org/10.1073/pnas.0906865106
[27] F. N. Kogan, “Operational Space Technology for Global Vegetation Assessment,” Bulletin of American Meteorological Society, Vol. 82, No. 9, 2001, pp. 1949-1964.
[28] C. O. Justice, G. Dugdale, J. R. G. Townshend, A. S. Narracott and M. Kumar, “Synergism between NOAAAVHRR and Meteosat Data for Studying Vegetation Development in Semi-Arid West Africa,” International Journal of Remote Sensing, Vol. 12, No. 6, 1991, pp. 1349-1368. http://dx.doi.org/10.1080/01431169108929730
[29] D. A. Sims, A. F. Rahman, V. D. Cordova, B. Z. El-Masri, D. D. Baldocchi, P. V. Bolstad, L. B. Flanagan, A. H. Goldstein, D. Y. Hollinger, L. Misson, R. K. Monson, W. C. Oechel, H. P. Schmid, S. C. Wofsy and L. Xu, “A New Model of Gross Primary Productivity for North American Ecosystems Based Solely on the Enhanced Vegetation Index and Land Surface Temperature from MODIS,” Remote Sensing of Environment, Vol. 112, No. 4, 2008, pp. 1633-1646.
[30] F. N. Kogan, “World Droughts in the Millennium from AVHRR-Based Vegetation Health Indices,” Eos, Transactions, American Geophysical Union, Vol. 83, No. 48, 2002, pp. 557-564. http://dx.doi.org/10.1029/2002EO000382
[31] A. O. Cardoso, A. M. H. de Avila, H. S. Pinto and E. D. Assad, “Use of Climate Forecasts to Soybean Yield Estimates,” In: H. El-Shemy, Ed., Soybean Physiology and Biochemistry, InTech, 2011, p. 489.
[32] E. Mercante, R. A. C. Lamparelli, M. A. Uribe-Opazo and J. V. Rocha, “Modelos de Regressao Lineares Para Estimativa de Produtividade da Soja no Oeste do Paraná, Utilizando Dados Espectrais,” Engenharia Agrícola, Vol. 30, No. 3, 2010, pp. 504-517.
[33] CONAB, “Companhia Nacional de Abastecimento. Historical Series,” 2011.
[34] K. R. Saraiva and F. Souza, “Estatísticas Sobre Irrigacao nas Regioes Sul e Sudeste do Brasil Segundo o Censo Agropecuário 2005-2006,” Revista Irriga, Vol. 16, No. 2, 2012, pp. 168-176.
[35] J. Paulino, M. V. Folegatti, C. A. Zolin, R. M. Sánchez-Román and J. V. J. Unesp, “Situacao da Agricultura Irrigada no Brasil de Acordo com o Censo Agropecuário 2006,” Irriga, Vol. 16, No. 3, 2011, pp. 163-176.
[36] G. R. da Cunha, N. A. Barni, J. C. Haas, J. R. T. Maluf, R. Matzenauer, A. Pasinato, M. B. M. Pimentel and J. L. F. Pires, “Zoneamento Agrícola e época de Semeadura Para Soja No Rio Grande do Sul,” Revista Brasileira de Agrometeorologia, Vol. 9, No. 3, 2001, pp. 446-459.
[37] B. M. Rabus and A. R. R. Eineder, “The Shuttle Radar Topography Mission—A New Class of Digital Elevation Models Acquired by Spaceborneradar,” Photogrammetric Engineering & Remote Sensing, Vol. 57, No. 4, 2003, pp. 241-262.
[38] E. Jasinski, D. Morton, R. DeFries, Y. Shimabukuro, L. Anderson and M. Hansen, “Physical Landscape Correlates of the Expansion of Mechanized Agriculture in Mato Grosso, Brazil,” Earth Interactions, Vol. 9, No. 16, 2005, pp. 1-18. http://dx.doi.org/10.1175/EI143.1
[39] Instituto Brasileiro de Geografia e Estatística (IBGE), “Producao Agrícola Municipal—Automatic Data Recovery System—SIDRA,” 2011. www.sidra.ibge.gov.br
[40] S. R. Dottoand and R. C. Rosinha, “Desempenho de Cultivares de Soja Indicadas Para o RS-Relatório de Produtividade, Resultados 2008/2009,” Fundacao Pró-Sementes/Sistema FARSUL, 2009.
[41] P. M. Brando, S. J. Goetz, A. Baccini, D. C. Nepstad, P. S. A. Beck and M. C. Christman, “Seasonal and Interanual Variability of Climate and Vegetation Indicies across the Amazon,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 107, No. 33, pp. 14685-14690.
[42] A. Huete, K. Didan, T. Miura, E. P. Rodriguez, X. Gao and L. G. Ferreira, “Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices,” Remote Sensing of Environment, Vol. 83, No. 1-2, 2002, pp. 195-213.
[43] National Aeronautics and Space Administration (NASA), “Warehouse Inventory Search Tool,” 2009.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.