[1]
|
H. B. Liu, U. Pal, R. Perez and J. A. Ascencio, “Structural Transformation of Au-Pd Bimetallic Nanoclusters On Thermal Heating and Cooling: A Dynamic Analysis,” Journal of Physical Chemistry B, Vol. 110, No. 11, 2006, pp. 5191-5195. http://dx.doi.org/10.1021/jp056060e
|
[2]
|
R. Ferrando, J. Jellinek and R. L. Johnston, “Nanoalloys: From Theory to Applications of Alloy Clusters and Nanoparticles,” Chemical Reviews, Vol. 108, No. 3, 2008, pp. 845-910. http://dx.doi.org/10.1021/cr040090g
|
[3]
|
M. O. Nutt, J. B. Hughes and M. S. Wong, “Designing Pd-on-Au Bimetallic Nanoparticle Catalysts for Trichloroethene Hydrodechlorination,” Environmental Science & Technology, Vol. 39, No. 5, 2005, pp. 1346-1353. http://dx.doi.org/10.1021/es048560b
|
[4]
|
O. V. Salata, “Applications of Nanoparticles in Biology and Medicine,” Journal of Nanobiotechnology, Vol. 2, No. 3, 2004, pp. 1-6. http://dx.doi.org/10.1186/1477-3155-2-3
|
[5]
|
I. Bala, S. Hariharan and M. Kumar, “PLGA Nanoparticles in Drug Delivery: The State of the Art,” Critical ReviewsTM in Therapeutic Drug Carrier Systems, Vol. 21, 2004, pp. 387-422. http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v21.i5.20
|
[6]
|
J. L. Elechiguerra, J. L. Burt, J. R. Morones, A. Camacho, X. Gao, H. Lara and M. José-Yacamán, “Interaction of Silver Nanoparticles with HIV-1,” Journal of Nanobiotechnology, Vol. 3, No. 6, 2005, pp. 1-10. http://dx.doi.org/10.1186/1477-3155-3-6
|
[7]
|
T. A. Yamamoto, T. Nakagawa, S. Seino and H. Nitani, “Bimetallic Nanoparticles of PtM (M=Au, Cu, Ni) Supported on Iron Oxide: Radiolytic Synthesis and CO Oxidation Catalysis,” Applied Catalysis A: General, Vol. 387, No. 1-2, 2010, pp. 195-202. http://dx.doi.org/10.1016/j.apcata.2010.08.020
|
[8]
|
Y.-M. Chung and H.-K. Rhee, “Pt-Pd Bimetallic Nanoparticles Encapsulated in Dendrimer Nanoreactor,” Catalysis Letters, Vol. 85, No. 3-4, 2003, pp. 159-164. http://dx.doi.org/10.1023/A:1022181327349
|
[9]
|
S. Mandal, D. Roy, R. V. Chaudhari and M. Sastry, “Pt and Pd Nanoparticles Immobilized on Amine-Functionalized Zeolite: Excellent Catalysts for Hydrogenation and Heck Reactions,” Chemistry of Materials, Vol. 16, No. 19, 2004, pp. 3714-3724. http://dx.doi.org/10.1021/cm0352504
|
[10]
|
A. N. Golikand, E. Lohrasbi and M. Asgari, “Enhancing the Durability of Multi-Walled Carbon Nanotube Supported by Pt and Pt-Pd Nanoparticles in Gas Diffusion Electrodes,” International Journal of Hydrogen Energy, Vol. 35, No. 17, 2010, pp. 9233-9240. http://dx.doi.org/10.1016/j.ijhydene.2010.02.052
|
[11]
|
Z.-L. Zhou, T.-F. Kang, Y. Zhang and S.-Y. Cheng, “Electrochemical Sensor for Formaldehyde Based on Pt-Pd Nanoparticles and a Nafion-modified Glassy Carbon Electrode,” Microchimica Acta, Vol. 164, No. 1-2, 2009, pp. 133-138. http://dx.doi.org/10.1007/s00604-008-0046-x
|
[12]
|
M. J. Llorca, J. M. Feliu, A. Aldaz and J. Clavilier, “Formic Acid Oxidation on Pdad + Pt(100) and Pdad + Pt(111) Electrodes,” Journal of Electroanalytical Chemistry, Vol. 376, No. 1-2, 1994, pp. 151-160. http://dx.doi.org/10.1016/0022-0728(94)03506-7
|
[13]
|
H. Lee, S. E. Habas, G. A. Somorjai and P. Yang, “Localized Pd Overgrowth on Cubic Pt Nanocrystals for Enhanced Electrocatalytic Oxidation of Formic Acid,” Lawrence Berkeley National Laboratory, Berkeley, 2009.
|
[14]
|
S. K. R. S. Sankaranarayanan, V. R. Bhethanabotla and B. Joseph, “Molecular Dynamics Simulation Study of the Melting of Pd-Pt Nanoclusters,” Physical Review B, Vol. 71, No. 19, 2005, pp. 195415-1-195415-15. http://dx.doi.org/10.1103/PhysRevB.71.195415
|
[15]
|
S. K. R. S. Sankaranarayanan, V. R. Bhethanabotla and B. Joseph, “Molecular Dynamics Simulations of the Structural and Dynamic Properties of Graphite-Supported Bimetallic Transition Metal Clusters,” Physical Review B, Vol. 72, No. 19, 2005, pp. 195405-1-195405-15. http://dx.doi.org/10.1103/PhysRevB.72.195405
|
[16]
|
S. J. Mejía-Rosales, C. Fernández-Navarro, E. PérezTijerina, J. M. Montejano-Carrizales and M. José-Yacamán, “Two-Stage Melting of Au-Pd Nanoparticles,” Journal of Physical Chemistry B, Vol. 110, No. 26, 2006, pp. 12884-12889. http://dx.doi.org/10.1021/jp0614704
|
[17]
|
A. P. Sutton and J. Chen, “Long-Range Finnis-Sinclair Potentials,” Philosophical Magazine Letters, Vol. 61, No. 3, 1990, pp. 139-146. http://dx.doi.org/10.1080/09500839008206493
|
[18]
|
Y. Kimura, Y. Qi, T. Cagin and W. Goddard III, “The Quantum Sutton-Chen Many-Body Potential for Properties of Fcc Metals,” CalTech ASCI Technical Report 003, California Institute of Technology, Pasadena, 1998.
|
[19]
|
Y. Qi, T. R. Cagin, Y. Kimura and W. A. Goddard III, “Molecular Dynamics Simulations of Glass Formation and Crystallization in Binary Liquid Metals: Cu-Ag and Cu-Ni,” Physical Review B, Vol. 59, No. 5, 1999, pp. 3527-3533. http://dx.doi.org/10.1103/PhysRevB.59.3527
|
[20]
|
H. Raffi-Tabar and A. P. Sutton, “Long-Range FinnisSinclair Potentials for Fcc Metallic Alloys,” Philosophical Magazine Letters, Vol. 63, No. 4, 1991, pp. 217-224. http://dx.doi.org/10.1080/09500839108205994
|
[21]
|
H. Baker, “ASM Handbook, Volume 3: Alloy Phase Diagrams,” 10th Edition, ASM International, Materials Park, 1992.
|
[22]
|
J.-H. Shim, B.-J. Lee and Y. W. Cho, “Thermal Stability of Unsupported Gold Nanoparticle: A Molecular Dynamics Study,” Surface Science, Vol. 512, No. 3, 2002, pp. 262-268. http://dx.doi.org/10.1016/S0039-6028(02)01692-8
|
[23]
|
F. Delogu, “Structural and Energetic Properties of Unsupported Cu Nanoparticles from Room Temperature to the Melting Point: Molecular Dynamics Simulations,” Physical Review B, Vol. 72, No. 20, 2005, pp. 205418-12054-9. http://dx.doi.org/10.1103/PhysRevB.72.205418
|
[24]
|
M. José-Yacamán, C. Gutierrez-Wing, M. Miki, D. Q. Yang, K. N. Piyakis and E. Sacher, “Surface Diffusion and Coalescence of Mobile Metal Nanoparticles,” Journal of Physical Chemistry B, Vol. 109, No. 19, 2005, pp. 9703-9711. http://dx.doi.org/10.1021/jp0509459
|
[25]
|
S. Jalili, C. Mochani, M. Akhavan and J. Schofield, “Molecular Dynamics Simulation of a Graphite-Supported Copper Nanocluster: Thermodynamic Properties and Gas Adsorption,” Molecular Physics, Vol. 110, No. 5, 2012, pp. 267-276. http://dx.doi.org/10.1080/00268976.2011.640953
|