Wet-Chemical Synthesis and Optical Property of ZnSe Nanowires by Ag2Se-Catalyzed Growth Mechanism

Abstract

High-quality II-VI semiconductor ZnSe nanowires were facilely prepared in the oleic acid and oleylamine mixed solution at low temperatures of 130°C-200°C through an Ag2Se-catalyzed growth mechanism. Oleylamine served as an effective reducing agent and a surfactant in the synthesis. Many of the resultant nanowires were terminated by an Ag2Se catalyst particle at one of their ends, confirming that the nanowire growth followed a catalytic mechanism. The crystal structure of Ag2Se catalyst was examined, which exhibited a metastable tetragonal phase, not the common orthorhombic phase. Meanwhile, the optical properties of as-synthesized ZnSe nanowire solid powder were evaluated by the UV-Visible diffuse reflectance and photoluminescence spectroscopy and a significant blue shift was observed compared to the bulk ZnSe with a band gap of 2.7 eV. This work would provide an alternative and effective catalytic route for the preparation of one-dimensional (1D) nanostructures of ZnSe and other metal selenides.

Share and Cite:

J. Wang, H. Feng, W. Fan, K. Chen and Q. Yang, "Wet-Chemical Synthesis and Optical Property of ZnSe Nanowires by Ag2Se-Catalyzed Growth Mechanism," Advances in Materials Physics and Chemistry, Vol. 3 No. 6, 2013, pp. 289-294. doi: 10.4236/ampc.2013.36039.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] R. Yan, D. Gargas and P. Yang, “Nanowire Photonics,” Nature Photonics, Vol. 3, No. 10, 2009, pp. 569-576.
http://dx.doi.org/10.1038/nphoton.2009.184
[2] T. Cohen-Karni and C. M. Lieber, “Nanowire Nanoelectronics: Building Interfaces with Tissue and Cells at the Natural Scale of Biology,” Pure and Applied Chemistry, Vol. 85, No. 5, 2013, pp. 883-901.
http://dx.doi.org/10.1351/PAC-CON-12-10-19
[3] T. Zhai, L. Li, X. Wang, X. Fang, Y. Bando and D. Golberg, “Recent Developments in One-Dimensional Inorganic Nanostructures for Photodetectors,” Advanced Functional Materials, Vol. 20, No. 24, 2010, pp. 4233-4248.
http://dx.doi.org/10.1002/adfm.201001259
[4] S. Acharya, S. Sarkar and N. Pradhan, “Material Diffusion and Doping of Mn in Wurtzite ZnSe Nanorods,” The Journal of Physical Chemistry C, Vol. 117, No. 11, 2013, pp. 6006-6012. http://dx.doi.org/10.1021/jp400456t
[5] L. Wang, M. Lu, X. Wang, Y. Yu, X. Zhao, P. Lv, H. Song, X. Zhang, L. Luo, C. Wu, Y. Zhang and J. Jie, “Tuning the p-Type Conductivity of ZnSe Nanowires via Silver Doping for Rectifying and Photovoltaic Device Applications,” Journal of Materials Chemistry A, Vol. 1, No. 4, 2013, pp. 1148-1154.
http://dx.doi.org/10.1039/c2ta00471b
[6] Y. Dong, Q. Peng and Y. Li, “Semiconductor Zinc Chalcogenides Nanofibers from 1-D Molecular Precursors,” Inorganic Chemistry Communications, Vol. 7, No. 3, 2004, pp. 370-373.
http://dx.doi.org/10.1016/j.inoche.2003.12.017
[7] J. Yang, C. Xue, S. H. Yu, J. H. Zeng and Y. T. Qian, “General Synthesis of Semiconductor Chalcogenide Nanorods by Using the Monodentate Ligand n-Butylamine as a Shape Controller,” Angewandte Chemie International Edition, Vol. 41, No. 24, 2002, pp. 4697-4700.
http://dx.doi.org/10.1002/anie.200290020
[8] Z. Deng, C. Wang, X. Sun and Y. Li, “Structure-Directing Coordination Template Effect of Ethylenediamine in Formations of ZnS and ZnSe Nanocrystallites via Solvothermal Route,” Inorganic Chemistry, Vol. 41, No. 4, 2002, pp. 869-873. http://dx.doi.org/10.1021/ic0103502
[9] S. L. Xiong, J. M. Shen, Q. Xie, Y. Q. Gao, Q. Tang and Y. T. Qian, “A Precursor-Based Route to ZnSe Nanowire Bundles,” Advanced Functional Materials, Vol. 15, No. 11, 2005, pp. 1787-1792.
http://dx.doi.org/10.1002/adfm.200500069
[10] B. Xi, S. L. Xiong, D. Xu, J. Li, H. Zhou, J. Pan, J. Li and Y. T. Qian, “Tetraethylenepentamine-Directed Controllable Synthesis of Wurtzite ZnSe Nanostructures with Tunable Morphology,” Chemistry-A European Journal, Vol. 14, No. 31, 2008, pp. 9786-9791.
http://dx.doi.org/10.1002/chem.200801041
[11] L. S. Li, N. Pradhan, Y. Wang and X. Peng, “High Quality ZnSe and ZnS Nanocrystals Formed by Activating Zinc Carboxylate Precursors,” Nano Letters, Vol. 4, No. 11, 2004, pp. 2261-2264.
http://dx.doi.org/10.1021/nl048650e
[12] A. B. Panda, S. Acharya and S. Efrima, “Ultranarrow ZnSe Nanorods and Nanowires: Structure, Spectroscopy, and One-Dimensional Properties,” Advanced Materials, Vol. 17, No. 20, 2005, pp. 2471-2474.
http://dx.doi.org/10.1002/adma.200500551
[13] T. Yao, Q. Zhao, Z. Qiao, F. Peng, H. Wang, H. Yu, C. Chi and J. Yang, “Chemical Synthesis, Structural Characterization, Optical Properties, and Photocatalytic Activity of Ultrathin ZnSe Nanorods,” Chemistry-A European Journal, Vol. 17, No. 31, 2011, pp. 8663-8670.
http://dx.doi.org/10.1002/chem.201003531
[14] A. Dong, R. Tang and W. E. Buhro, “Solution-Based Growth and Structural Characterization of Homoand Heterobranched Semiconductor Nanowires,” Journal of the American Chemical Society, Vol. 129, No. 40, 2007, pp. 12254-12262. http://dx.doi.org/10.1021/ja0737772
[15] D. D. Fanfair and B. A. Korgel, “Twin-Related Branching of Solution-Grown ZnSe Nanowires,” Chemistry of Materials, Vol. 19, No. 20, 2007, pp. 4943-4948.
http://dx.doi.org/10.1021/cm071440t
[16] N. Petchsang, L. Shapoval, F. Vietmeyer, Y. Yu, J. H. Hodak, I.-M. Tang, T. H. Kosel and M. Kuno, “Low Temperature Solution-Phase Growth of ZnSe and ZnSe/CdSe Core/Shell Nanowires,” Nanoscale, Vol. 3, No. 8, 2011, pp. 3145-3151. http://dx.doi.org/10.1039/c1nr10176e
[17] L. Zhang and H. Yang, “The Ag+ Induced Solution-Liquid-Solid Growth, Photoluminescence and Photocatalytic Activity of Twinned ZnSe Nanowires,” Applied Physics A: Materials Science & Processing, Vol. 98, No. 4, 2010, pp. 801-810.
http://dx.doi.org/10.1007/s00339-009-5524-4
[18] J. Wang, C. Yang, Z. Huang, M. G. Humphrey, D. Jia, T. You, K. Chen, Q. Yang and C. Zhang, “Seed-Catalyzed Heteroepitaxial Growth and Nonlinear Optical Properties of Zinc Selenide Nanowires,” Journal of Materials Chemistry, Vol. 22, No. 19, 2012, pp. 10009-10014.
http://dx.doi.org/10.1039/c2jm00091a
[19] J. Wang, K. Chen, M. Gong, B. Xu and Q. Yang, “Solution-Solid-Solid Mechanism: Superionic Conductors Catalyze Nanowire Growth,” Nano Letters, Vol. 13, No. 9, 2013, pp, 3996-4000.
http://dx.doi.org/10.1021/nl400637w
[20] Y. Cai, T. L. Wong, S. K. Chan, I. K. Sou, D. S. Su and N. Wang, “Growth Behaviors of Ultrathin ZnSe Nanowires by Au-Catalyzed Molecular-Beam Epitaxy,” Applied Physics Letters, Vol. 93, No. 23, 2008, Article ID: 233107.
http://dx.doi.org/10.1063/1.3037024
[21] Q. Li, X. G. Gong, C. R. Wang, J. Wang, K. Ip and S. K. Hark, “Size-Dependent Periodically Twinned ZnSe Nanowires,” Advanced Materials, Vol. 16, No. 16, 2004, pp. 1436-1440. http://dx.doi.org/10.1002/adma.200306648
[22] A. Sahu, L. Qi, M. S. Kang, D. Deng and D. J. Norris, “Facile Synthesis of Silver Chalcogenide (Ag2E; E = Se, S, Te) Semiconductor Nanocrystals,” Journal of the American Chemical Society, Vol. 133, No. 17, 2011, pp. 6509-6512. http://dx.doi.org/10.1021/ja200012e
[23] R. de Ridder and S. Amelinck, “An Electron Microscopic Study of the Polymorphic Transformation in Ag2Se (I),” Physica Status Solidi A-Applications and Materials Science, Vol. 18, No. 1, 1973, pp. 99-107.
http://dx.doi.org/10.1002/pssa.2210180106
[24] Y. Saito, M. Sato and M. Shiojiri, “Orientation in Ag2Se Polymorphic Films Produced by the Reaction of Silver Films with Selenium,” Thin Solid Films, Vol. 79, No. 3, 1981, pp. 257-266.
http://dx.doi.org/10.1016/0040-6090(81)90314-X
[25] S. T. Connor, C.-M. Hsu, B. D. Weil, S. Aloni and Y. Cui, “Phase Transformation of Biphasic Cu2S-CuInS2 to Monophasic CuInS2 Nanorods,” Journal of the American Chemical Society, Vol. 131, No. 13, 2009, pp. 4962-4966.
http://dx.doi.org/10.1021/ja809901u
[26] C. Xiao, J. Xu, K. Li, J. Feng, J. Yang and Y. Xie, “Superionic Phase Transition in Silver Chalcogenide Nanocrystals Realizing Optimized Thermoelectric Performance,” Journal of the American Chemical Society, Vol. 134, No. 9, 2012, pp. 4287-4293.
http://dx.doi.org/10.1021/ja2104476
[27] O. Tadanaga, Y. Koide, K. Hashimoto, T. Oku, N. Teraguchi, Y. Tomomura, A. Suzuki and M. Murakami, “Dependence of Electrical Properties on Work Functions of Metals Contacting to p-Type ZnSe,” Japanese Journal of Applied Physics, Vol. 35, No. 3, 1996, pp. 1657-1663.
http://dx.doi.org/10.1143/JJAP.35.1657
[28] C. Wang, S Peng, R. Chan and S. Sun, “Synthesis of AuAg Alloy Nanoparticles from Core/Shell-Structured Ag/Au,” Small, Vol. 5, No. 5, 2009, pp. 567-570.
http://dx.doi.org/10.1002/smll.200801169
[29] X. T. Zhang, K. M. Ip, Q. Li and S. K. Hark, “Photoluminescence of Ag-Doped ZnSe Nanowires Synthesized by Metalorganic Chemical Vapor Deposition,” Applied Physics Letters, Vol. 86, No. 20, 2005, Article ID: 203114. http://dx.doi.org/10.1063/1.1931828
[30] P. O. Holtz, B. Monemar and H. J. Loykowski, “Optical Properties of Ag-Related Centers in Bulk ZnSe,” Physical Review B, Vol. 32, No. 2, 1985, pp. 986-996.
http://dx.doi.org/10.1103/PhysRevB.32.986

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.