Theoretical Study of 5-HTP. Potential New Drug Resulting from the Complexation of 5-HTP with ATP


5-HTP (5-Hydroxytryptophan), is the precursor of the neurotransmitter serotonin. Molecular parameters (interatomic distances and angles, total atomic charge, dipole moments) of 5-HTP (5-Hydroxytryptophan) and ATP (Adenosine triphosphate), and of their possible complex, including its heat of formation, have been computed in an ab initio study involving DFT calculations. The 6-31G* basis set and the B3LYP functional were employed. The aim of this study is to emphasize by DFT calculation the possible existence of a complex between ATP and 5-HTP that may have the properties of a new drug. A Natural Bond Orbital analysis description offers supplementary details for the structure of the molecular units and their interaction.

Share and Cite:

J. Weinberg and D. Lerner, "Theoretical Study of 5-HTP. Potential New Drug Resulting from the Complexation of 5-HTP with ATP," Computational Chemistry, Vol. 1 No. 1, 2013, pp. 1-4. doi: 10.4236/cc.2013.11001.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] H. Weinstein and R. Osman, “On the Structural and Mechanistic Basis of Function, Classification, and Ligand Design for 5-HT Receptors,” Neuropsychopharmacology, Vol. 3, No. 5-6, 1990, pp. 397-409.
[2] K. A. Smith, C. G. Fairburn and P. J. Cowen, “Relapse of Depression after Rapid Depletion of Tryptophan,” Lancet, Vol. 349, No. 9056, 1997, pp. 915-919.
[3] M. Kaneko, N. Oshima, Y. Numata, K. Honda, R. Tachibana, A. Watanabe, Y. Takahashi and H. Kumashiro, “Psychopharmacological and Biochemical Characteristics of 5-Hydroxytryptophan Responder in Depression,” Neuroscience, Vol. 17, No. 3, 1991, pp. 349-358.
[4] K. Lohmann, “über die Pyrophosphatfraktion im Muskel,” Naturwissenschaften, Vol. 17, No. 31, 1929, pp. 624-625.
[5] F. Lipman, “Metabolic Generation Andutilization of Phosphate Bond Energy,” Advances in Enzymology and Related Subjects of Biochemistry, Vol. 1, 1941, pp. 99-162.
[6] W. A. Bridger and J. F. Henderson, “Cell ATP,” Wiley, New York, 1983, pp. 9-19.
[7] D. A. Lerner, J. Weinberg and C. Balaceanu-Stolnici, “Ab Initio and Semiempirical Molecular Orbital Calculations on DHEA I. The Electronic Structure,” Revue Roumaine de Chimie, Vol. 47, 2002, pp. 893-899.
[8] D. A. Lerner, J. Weinberg, F. Cimpoesu and C. Balaceanu-Stolnici, “Theoretical Study of DHEA: Comparative HF and DFT Calculations of the Electronic Properties of a Complex between DHEA and Serotonin,” Journal of Molecular Modeling, Vol. 12, No. 2, 2006, pp. 146-151.
[9] J. Weinberg, F. Cimpoesu and D. A. Lerner, “The Association of Dehydro-Epiandrosterone and Adenosine Triphosphate Acid: A DFT Study of Interactions between Prototypic Biologically Active Molecules,” Journal of Molecular Structure: THEOCHEM, Vol. 912, No. 1-3, 2009, pp. 32-37.
[10] N. L. Allinger, “Conformational Analysis. 130. MM2. A Hydrocarbon Force Field Utilizing V1 and V2 Torsional Terms,” Journal of the American Chemical Society, Vol. 99, No. 25, 1977, pp. 8127-8134.
[11] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, “Gaussian 09,” Revision A.1, Gaussian, Inc., Wallingford, 2009.
[12] C. J. Cramer, “Essentials of Computational Chemistry. Theories and Models,” Wiley, New York, 2002.
[13] A. E. Reed, L. A. Curtiss and F. Weinhold, “Intermolecular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint,” Chemical Review, Vol. 88, No. 6, 1988, pp. 899-926.
[14] E. D. Glendening, A. E. Reed, J. E. Carpenter and F. Weinhold, “The NBO3.0 Program,” University of Wisconsin, Copyright 1996-2001.
[15] E Frisch, D. R. Dennington II, T. A. Keith, A. B. Nielsen and A. J. Holder, “The ‘GaussView 09W’ Version 7.0,” Copyright 1995-2009.
[16] K. Fukui, T. Yonezawa and C. Nagata, “An Investigation into the Reactivity of Isotetralin,” Bulletin of the Chemical Society of Japan, Vol. 27, No. 7, 1954, pp. 423-427.
[17] K. Fukui, T. Yonezawa and C. Nagata, “Interrelations of Quantum-Mechanical Quantities Concerning Chemical Reactivity of Conjugated Molecules,” Journal of Chemical Physics, Vol. 26, No. 4, 1957, p. 831.
[18] I. Fleming, “Frontier Orbitals and Organic Chemical Reactions,” Wiley, London, 1976.
[19] S. Yazici, C. Albayrak, I. E. Gümrük?üo?lu, I. Senel and O. Büyükgüng?r, “Experimental and Density Functional Theory (DFT) Studies on (E)-Acetyl-4-(4-Nitrophenyl-diazenyl) Phenol,” Journal of Molecular Structure, Vol. 985, No. 2-3, 2011, pp. 292-298.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.