Share This Article:

Computational Study of the Alkylation Reaction of the Nitrogen Mustard Mechlorethamine Using NBO Model and the QTAIM Theory

Abstract Full-Text HTML Download Download as PDF (Size:1149KB) PP. 127-137
DOI: 10.4236/ojpc.2013.34016    3,819 Downloads   6,907 Views   Citations

ABSTRACT

Substances known as nitrogen mustards turn into aziridinium ion through the intramolecular cyclization SN1. This ion reacts with the DNA preferably at the N7 position of the guanine, and because of this, it is an important antineoplastic agent. Based on this, the objective of this study is to quantify the interaction between the nitrogen mustard mechlorethamine and the guanine, using the NBO analysis and the QTAIM theory. The results of the NBO analysis showed that when the triangular cycle C4-N1-C5 is formed, there is some resonance among these atoms. This analysis also showed that the electronic transition at the sigma antibondingorbital σ* N1-C4 presents higher perturbation energy of second order, indicating that this bond is broken at the nucleophilic attack of the N7 nitrogen of guanine. The analysis that refers to the electron density obtained by the QTAIM theory indicates that the guanine proximity enables an electron density polarization of the BCPs aziridinium ion of mechlorethamine making that the frontal part of the ion becomes electron deficient. Finally, the relative results to the Laplacian of the electron density obtained by the QTAIM theory showed that the guanine approximation increases the “hole” factor at the C4, proving that the nucleophilic attack based on the “lump-hole” concept causes the region of that atom is the site of alkylation reaction.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

M. Almeida and S. Faria, "Computational Study of the Alkylation Reaction of the Nitrogen Mustard Mechlorethamine Using NBO Model and the QTAIM Theory," Open Journal of Physical Chemistry, Vol. 3 No. 4, 2013, pp. 127-137. doi: 10.4236/ojpc.2013.34016.

References

[1] V. L. Almeida, A. Leitao, L. C. B. Reina, C. A. Montanari and C. L. Donnici, “Cancer e Agentes Antineoplásicos, Ciclo-Celular Específicos e Ciclo-Celular nao Específicos que Interagem com o DNA: uma Introducao,” Química Nova, Vol. 28, No. 1, 2005, pp. 118-129. http://dx.doi.org/10.1590/S0100-40422005000100021
[2] P. K. Shukla, P. C. Mishra and S. Suhai, “Reactions of DNA Bases with the Anti-Cancer Nitrogen Mustard Mechlorethamine: A Quantum Chemical Study,” Chemical Physics Letters, Vol. 449, No. 4-6, 2007, pp. 323-328. http://dx.doi.org/10.1016/j.cplett.2007.10.072
[3] P. Brookes and P. D. Lawley, “The Reaction of Monoand Difunctional Alkylating Agents with Nucleic Acids,” Biochemical Journal, Vol. 80, No. 3, 1961, pp. 496-503.
[4] S. M. Rink and P. B. Hopkins, “A Mechlorethamine-Induced DNA Interstrand Cross-Link Bends Duplex DNA,” Biochemistry, Vol. 34, No. 4, 1995, pp. 1439-1445. http://dx.doi.org/10.1021/bi00004a039
[5] J. P. Holley, A. Mather, R. T. Wheelhouse, P. M. Cullis, J. A. Hartley, J. P. Bingham and G. M. Cohen, “Targeting of Tumor Cells and DNA by a Chlorambucil-Spermidine Conjugate,” Cancer Research, Vol. 52, 1992, pp. 4190-4195.
[6] A. S. Prakash, W. A. Denny, T. A. Gourdie, K. K. Valu, P. D. Woodgate and L. P. G. Wakelin, “DNA-Directed Alkylating Ligands as Potential Antitumor Agents: Sequence Specificity of Alkylation by Intercalating Aniline Mustards,” Biochemistry, Vol. 29, No. 42, 1990, pp. 9799-9807.
http://dx.doi.org/10.1021/bi00494a007
[7] I. Carvalho, M. T. Pupo, A. D. L. Borges and L. S. C. Bernardes, “Introdu??o a Modelagem Molecular de Fármacos no curso Experimental de Química Farmacêutica,” Quimica Nova, Vol. 26, No. 3, 2003, pp. 428-438. http://dx.doi.org/10.1590/S0100-40422003000300023
[8] H. Broch, A. Hamza and D. Vasilescu, “Quantum Molecular Modeling of the Interaction between Guanine and Alkylating Agents-1-Sulfur Mustard,” Journal of Biomolecular Structure Dynamics, Vol. 13, No. 3, 1996, pp. 903-914. http://dx.doi.org/10.1080/07391102.1996.10508905
[9] H. Broch, A. Hamza and D. Vasilescu, “Quantum Molecular between Guanine and Alkylating Agents 2-Nitrogen-Mustard,” Journal of Biomolecular Structure Dynamics, Vol. 13, No. 3, 1996, pp. 915-924. http://dx.doi.org/10.1080/07391102.1996.10508906
[10] H. Broch, R. Viani and D. Vasilescu, “Quantum Molecular Study of the Alkylating Agent Mechlorethamine,” International Journal of Quantum Chemistry, Vol. 40, No. S18, 1991, pp. 119-130. http://dx.doi.org/10.1002/qua.560400715
[11] D. Vasilescu, M. Adrian-Scotto, A. Fadiel and A. Hamza, “Ab Initio Study of Alkylation of Guanine-Cytosine Base Pair by Sulfur and Nitrogen Mustards,” Journal of Biomolecular Structure Dynamics, Vol. 27, No. 4, 2010, pp. 465-476. http://dx.doi.org/10.1080/07391102.2010.10507331
[12] S. Kang and J. P. Green, “Correlation between Activity and Electronic State of Hallucinogenic Amphetamines,” Nature, Vol. 226, No. 5246, 1970, pp. 645-645. http://dx.doi.org/10.1038/226645a0
[13] R. T. Lalonde, H. Leo, H. Perakyla, C. W. Dence and R. P. Farrell, “Associations of Halogenated 2 (5H)-Furanones with Their MNDO-PM3 Computed Properties and Mode of Reactivity with Sodium Borohydride,” Chemical Research in Toxicology, Vol. 5, No. 3, 1992, pp. 392-400.
http://dx.doi.org/10.1021/tx00027a012
[14] O. Kikuchi, “Systematic QSAR Procedures with Quantum Chemical Descriptors,” Quantitative Structure-Activity Relationships, Vol. 6, No. 4, 1987, pp. 179-184. http://dx.doi.org/10.1002/qsar. 19870060406
[15] B. W. Clare, “Structure-Activity Correlations Psychotomimetcis. 1. Phenylalkylamines: Electronic, Volume, and Hidrophobicity Parameters,” Journal of Medicinal Chemistry, Vol. 33, No. 2, 1990, pp. 687-702. http://dx.doi.org/10.1021/jm00164a036
[16] B. W. Clare, “Charge Transfer Complexes and Frontier Orbital Energies in QSAR: A Congeneric Series of Electron Acceptors,” Journal of Molecular Structure Theochem, Vol. 337, No. 2, 1995, pp. 139-150. http://dx.doi.org/10.1016/0166-1280(95)04135-S
[17] J. P. Foster and F. Weinhold, “Natural Hybrid Orbitals,” Journal of American Chemical Society, Vol. 102, No. 24, 1980, pp. 7211-7218. http://dx.doi.org/10.1021/ja00544a007
[18] A. E. Reed, L. A. Curtiss and F. Weinhold, “Intermolecular Interactions from a Natural Bond Orbital, Donor-Accpetor Viewpoint,” Chemical Reviews, Vol. 88, No. 6, 1988, pp. 899-926. http://dx.doi.org/ 10.1021/cr00088a005
[19] L. Pauling, “The Nature Chemical Bond. Application of Results Obtained from the Quantum Mechanics and from a Theory of Paramagnetic Susceptibility to the Structure of Molecules,” Journal of American Chemical Society, Vol. 53, No. 4, 1931, pp. 1367-1400. http://dx.doi.org/10.1021/ja01355a027
[20] J. C. Slater, “Directed Valence in Polyatomic Molecules,” Physical Review, Vol. 37, No. 5, 1931, pp. 481-489. http://dx.doi.org/10.1103/PhysRev.37.481
[21] C. A. Coulson, “Valence,” 2nd Edition, Oxford University Press, London, 1952.
[22] R. F. W. Bader, “Atoms in Molecules: A Quantum Theory,” Claredon Press, Oxford, 1990.
[23] S. Calvo-Losada and J. J. Q. Sánchez, “Pericyclic versus Pseudopericyclic Reactions. What the Laplacian of the Charge Density, ▽2ρ(r), Has to Say about It? The Case of Cycloaddition Reactions,” Journal of Physical Chemistry A, Vol. 112, No. 35, 2008, pp. 8164-8178. http://dx.doi.org/10.1021/ jp711565g
[24] M. T. Carroll, J. R. Cheeseman, R. Osman and H. Weinstein, “Nucleophilic Addition to Activated Double Bonds: Predictions of Reactivity from the Laplacian Charge Density,” Journal of Physical Chemistry, Vol. 93, No. 13, 1989, pp. 5120-5123. http://dx.doi.org/10.1021/j100350a019
[25] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, “GAUSSVIEW 3.0, Revision D.02,” Gaussian Inc., Wallington, 2004.
[26] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, “Gaussview 03, Revision D.02,” Gaussian Inc., Wallington, 2004.
[27] 2013. http://www.cenapad.unicamp.br/
[28] F. Biegler-Konig, J. Schonbohm and D. Bayles, “AIM2000 —A Program to Analyze and Visualize Atoms in Molecules,” Journal of Computational Chemistry, Vol. 22, No. 5, 2001, pp. 545-559.
[29] S. R. Rajski and R. M. Williams, “DNA Cross-Link Agent as Antitumor Drugs,” Chemical Reviews, Vol. 98, 1998, No. 8, pp. 2723-2795. http://dx.doi.org/10.1021/cr9800199
[30] C. Avendana?o and C. J. Menéndez, “Medicinal Chemistry of Anticancer Drugs,” Elsevier, Amsterdam, 2008.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.