Scientific Research

An Academic Publisher

Frequency-domain Elastic wave Simulation Based on the Nonoverlapping Domain Decomposition Method ()

A new wave simulation technique for the elastic wave equation in the frequency domain based on a no overlapping domain decomposition algorithm is investigated. The boundary conditions and the finite difference discrimination of the elastic wave equation are derived. The algorithm of no overlapping domain decomposition method is given. The method solves the elastic wave equation by iteratively solving sub problems defined on smaller sub domains. Numerical computations both for homogeneous and inhomogeneous media show the effectiveness of the proposed method. This method can be used in the full-waveform inversion.

Share and Cite:

*American Journal of Computational Mathematics*, Vol. 3 No. 3B, 2013, pp. 21-26. doi: 10.4236/ajcm.2013.33B004.

Conflicts of Interest

The authors declare no conflicts of interest.

[1] | A. Bayliss, C. I. Goldstein and E. Turkel, “The Numerical Solution of the Helmholtz Equation for Wave Propagation Problmes in Underwater Acoustics,” Computers and Mathematics with Applications, Vol. 11, No. 7-8, 1985, pp. 655-665. doi:10.1016/0898-1221(85)90162-2 |

[2] | R. E. Plexxis, “A Helmholtz Iterative Solver for 3D Seismic-imaging Problems,” Geophysics, Vol. 72, No. 5 2007, pp. SM185-SM197. doi:10.1190/1.2738849 |

[3] | F. Ihlenburg and I. Babuska, “Finite Element Solution of the Helmholtz Equation with High Wave Number. Part I: The H-version of the FEM,” Computers and Mathematics with Applications, Vol. 30, No. 9, 1995, pp. 9-37. doi:10.1016/0898-1221(95)00144-N |

[4] | F. Ihlenburg and I. Babuska, “Finite Element Solution of the Helmholtz Equation with High Wave Number. Part II: The Hp-version of the FEM,” SIAM Journal on Numerical Analysis, Vol. 34, No. 1, 1997, pp. 315-358. doi:10.1137/S0036142994272337 |

[5] | A. Bayliss, C. I. Goldstein and E. Turkel, “An Iterative Method for the Helmholtz Equation,” Journal of Computational Physics, Vol. 49, No. 3, 1983, pp. 443-457. doi:10.1016/0021-9991(83)90139-0 |

[6] | Y. A. Erlangga, “Advances in Iterative Methods and PreConditioners for the Helmholtz Equation,” Archives of Computational Methods in Engineering, Vol. 15, No. 1 2008, pp. 37-66. doi:10.1007/s11831-007-9013-7 |

[7] | T. F. Chan and T. P. Mathew, “Domain Decomposition Algorithms,” Acta Numerica, Vol. 3, 1994, pp. 61-143. doi:10.1017/S0962492900002427 |

[8] | A. Tosseli and O. Widlund, “Domain Decomposition Methods-Algorithms and Theory,” Springer, Berlin, 2005. |

[9] | J. Xu, “Iterative Methods by Space Decomposition and Subspace Correction,” SIAM Review, Vol. 34, No. 4, 1992, pp. 581-613. doi:10.1137/1034116 |

[10] | J. Xu and J. Zou, “Some Nonoverlapping Domain Decomposition Methods,” SIAM Review, Vol. 40, No. 4, 1998, pp. 857-914. doi:10.1137/S0036144596306800 |

[11] | C. Cerjan, D. Kosloff, R. Kosloff and M. Reshef, “A Non-reflecting Boundary Condition for Discrete Acoustic and Elastic Wave Equations,” Geophysics, Vol. 50, No. 4, 1985, pp. 705-708. doi:10.1190/1.1441945 |

[12] | R. Clayton and B. Engquist, “Absorbing Boundary Conditions for Acoustic and Elastic Wave Equations,” Bulletin of the Seismological Society of America, Vol. 67, No. 6, 1977, pp. 1529-1540. |

[13] | J. P. Berenger, “A Perfectly Matched Layer for Absorbing of Electromagnetic Waves,” Journal of Computational Physics, Vol. 114, No. 2, 1994, pp. 185-200. doi:10.1006/jcph.1994.1159 |

[14] | S. Kim, “Domain Decomposition Iterative Procedures for Solving Scalar Waves in the Frequency Domain”, Numerische Mathematik, Vol. 79, No. 2, 1998, pp. 231-259. doi:10.1007/s002110050339 |

[15] | S. Larsson, “A Domain Decomposition Method for the Helmholtz Equation in a Multilayer Domain,” SIAM Journal on Scientific Computing, Vol. 20, No. 5, 1999, pp. 1713-1731. doi:10.1137/S1064827597325323 |

[16] | F. Magoulès, F. X. Roux and S. Salmon, “Optimal Discrete Transmission Conditions for a Nonoverlapping Domain Decomposition Method for the Helmholtz Equation,” SIAM Journal on Scientific Compting, Vol. 25, No. 5, 2004, pp. 1497-1515. doi:10.1137/S1064827502415351 |

[17] | Y. A. Erlangga, C. Vuik and C. W. Oosterlee, “On a Class of Preconditioners for Solving the Helmholtz Equation,” Applied Numerical Mathematics, Vol. 50, No. 3-4, 2003, pp. 409-425. doi:10.1016/j.apnum.2004.01.009 |

[18] | T. Airaksinen, E. Heikkola, A. Pennanen and J. Toivanen, “An Algebraic Multigrid based Shifted-Laplacian P[econditioner for the Helmholtz Equation,” Journal of Computational Physics, Vol. 226, No. 1, 2007, pp. 1196-1210.doi:10.1016/j.jcp.2007.05.013 |

Copyright © 2020 by authors and Scientific Research Publishing Inc.

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.