Tibiofemoral Joint Forces during the Stance Phase of Gait after ACL Reconstruction

Abstract

The main goals of anterior cruciate ligament reconstruction (ACLR) are to restore knee function and prevent development of osteoarthritis (OA). However, the incidence of early-onset OA remains higher in patients following ACLR. The purpose of this study was to compare the computed tibiofemoral joint (TFJ) forces and muscle forces of ACLR knees to those of BMI-matched control subjects during the stance phase of gait. We hypothesized that the use of principal component analysis would allow us to characterize alterations in three-dimensional TFJ loads and muscle forces after ACLR as compared to a healthy control population. Of the eight ACLR knees, four displayed an abnormal TFJ compressive force. In three of these four ACLR knees that displayed abnormal compressive forces, one of the major muscles/muscle groups crossing the knee also deviated from the control group. We believe that each subject has a unique response to their injury, reconstructive surgery, and rehabilitation.

Share and Cite:

Sanford, B. , Williams, J. , Zucker-Levin, A. and Mihalko, W. (2013) Tibiofemoral Joint Forces during the Stance Phase of Gait after ACL Reconstruction. Open Journal of Biophysics, 3, 277-284. doi: 10.4236/ojbiphy.2013.34033.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] L. S. Lohmander, P. M. Englund, L. L. Dahl and E. M. Roos, “The Long-Term Consequence of Anterior Cruciate Ligament and Meniscus Injuries,” American Journal of Sports Medicine, Vol. 35, No. 10, 2007, pp. 1756- 1769. http://dx.doi.org/10.1177/0363546507307396
[2] R. J. Butler, K. I. Minick, R. Ferber and F. Underwood, “Gait Mechanics after ACL Reconstruction: Implications for the Early Onset of Knee Osteoarthritis,” British Journal of Sports Medicine, Vol. 43, No. 5, 2009, pp. 366-370. http://dx.doi.org/10.1136/bjsm.2008.052522
[3] M. Hall, C. A. Stevermer and J. C. Gillette, “Gait Analysis Post Anterior Cruciate Ligament Reconstruction: Knee Osteoarthritis Perspective,” Gait Posture, Vol. 36, No. 1, 2012, pp. 56-60. http://dx.doi.org/10.1016/j.gaitpost.2012.01.003
[4] P. Worsley, M. Stokes and M. Taylor, “Predicted Kinematics and Kinetics during Functional Activities Using Motion Capture and Musculoskeletal Modeling in Healthy Older People,” Gait Posture, Vol. 33, No. 2, 2011, pp. 268-273. http://dx.doi.org/10.1016/j.gaitpost.2010.11.018
[5] P. Sritharan, Y. Lin and M. G. Pandy, “Muscles That Do Not Cross the Knee Contribute to the Knee Adduction Moment and Tibiofemoral Compartment Loading during Gait,” Journal of Orthoptera Research, Vol. 30, No. 10, 2012, pp. 1586-1595. http://dx.doi.org/10.1002/jor.22082
[6] E. S. Gardinier, K. Manal, T. S. Buchanan and L. Snyder-Mackler, “Altered Loading in the Injured Knee after ACL Rupture,” Journal of Orthoptera Research, Vol. 31, No. 3, 2013, pp. 458-464. http://dx.doi.org/10.1002/jor.22249
[7] L. Tsai, S. McLean, P. M. Colletti and C. M. Powers, “Greater Muscle Con-Contraction Results in Increased Tibiofemoral Compressive Forces in Females Who Have Undergone Anterior Cruciate Ligament Reconstruction,” Journal of Orthoptera Research, Vol. 30, No. 12, 2012, pp. 2007-2014. http://dx.doi.org/10.1002/jor.22176
[8] J. E. Jackson, “Principal Components and Factor Analysis: Part I—Principal Components,” Journal of Quality Technology, Vol. 12, No. 4, 1980, pp. 201-213.
[9] J. E. Jackson, “A User’s Guide to Principal Components,” Wiley, Hoboken, 2003.
[10] K. J. Deluzio, U. P. Wyss, B. Zee, P. A. Costigan and C. Sorbie, “Principal Component Models of Knee Kinematics and Kinetics: Normal vs. Pathological Gait Patterns,” Human Movement Science, Vol. 16, No. 2-3, 1997, pp. 201-217. http://dx.doi.org/10.1016/S0167-9457(96)00051-6
[11] K. J. Deluzio, U. P. Wyss, P. A. Costigan, C. Sorbie and B. Zee, “Gait Assessment in Unicompartmental Knee Arthroplasty Patients: Principal Component Modeling of Gait Waveforms and Clinical Status,” Human Movement Science, Vol. 18, No. 5, 1999, pp. 701-711. http://dx.doi.org/10.1016/S0167-9457(99)00030-5
[12] K. J. Deluzio and J. L. Astephen, “Biomechanical Features of Gait Waveform Data Associated with Knee Osteoarthritis: An Application of Principal Component Analysis,” Gait Posture, Vol. 25, 2007, pp. 86-93. http://dx.doi.org/10.1016/j.gaitpost.2006.01.007
[13] B. A. Sanford, A. R. Zucker-Levin, J. L. Williams, W. M. Mihalko and E. L. Jacobs, “Principal Component Analysis of Knee Kinematics and Kinetics after Anterior Cruciate Ligament Reconstruction,” Gait Posture, Vol. 36, No. 3, 2012, pp. 609-613. http://dx.doi.org/10.1016/j.gaitpost.2012.06.003
[14] M. Damsgaard, J. Rasmussen, S. T. Christensen, E. Surma and M. de Zee, “Analysis of Musculoskeletal Systems in the AnyBodyModeling System,” Simulation Modelling Practice and Theory, Vol. 14, No. 8, 2006, pp. 1100- 1111. http://dx.doi.org/10.1016/j.simpat.2006.09.001
[15] M. D. Klein Horsman, H. F. J. M. Koopman, F. C. T. van der Helm, L. P. Prose and H. E. J. Veeger, “Morphological Muscle and Joint Parameters for Musculoskeletal Modeling of the Lower Extremity,” Clinical Biomechanics, Vol. 22, No. 2, 2007, pp. 239-247. http://dx.doi.org/10.1016/j.clinbiomech.2006.10.003
[16] M. Lund, M. S. Anderson, M. de Zee and J. Rasmussen, “Functional Scaling of Musculoskeletal Models,” Proceedings of the XXIII International Society of Biomechanics, Brussels, 2011.
[17] J. Rasmussen, M. de Zee, M. Damsgaard, S. T. Christensen, C. Marek and K. Siebertz, “A General Method for Scaling Musculo-Skeletal Models,” Proceedings of the International Symposium on Computer Simulation in Biomechanics, Cleveland, 2005.
[18] D. H. Sutherland, “Gait Disorders in Childhood and Adolescence,” Williams & Wilkins, Baltimore, 1984.
[19] K. B. Shelburne, M. G. Pandy, F. C. Anderson and M. R. Torry, “Pattern of Anterior Cruciate Ligament Force in Normal Walking,” Journal of Biomechanics, Vol. 37, No. 6, 2004, pp. 797-805. http://dx.doi.org/10.1016/j.jbiomech.2003.10.010
[20] R. T. Raikova and B. I. Prilutsky, “Sensitivity of Predicted Muscle Forces to Parameters of the Optimization-Based Human Leg Model Revealed by Analytical and Numerical Analyses,” Journal of Biomechanics, Vol. 34, No. 10, 2001, pp. 1243-1255. http://dx.doi.org/10.1016/S0021-9290(01)00097-5
[21] M. Ackermann and A. van den Bogert, “Optimality Principles for Model-Based Prediction of Human Gait,” Journal of Biomechanics, Vol. 43, No. 6, 2010, pp. 1055- 1060. http://dx.doi.org/10.1016/j.jbiomech.2009.12.012
[22] R. D. Crowninshield and R. A. Brand, “A Physiologically Based Criterion of Muscle Force Prediction in Locomotion,” Journal of Biomechanics, Vol. 14, No. 11, 1981, pp. 793-801. http://dx.doi.org/10.1016/0021-9290(81)90035-X

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.