Friction and Wear Behavior of Ti-6Al-7Nb Biomaterial Alloy


Titanium has been increasingly applied to biomedical application because of its improved mechanical characteristics, corrosion resistance and biocompatibility. However their application remains limited, due to the low strength and poor wear resistance of unalloyed titanium. The purpose of this study is to evaluate the friction and wear behavior of high-strength titanium alloys: Ti-6Al-7Nb used in femoral stem (total hip prosthesis). The oscillating friction and wear tests have been carried out in ambient air with oscillating tribotester in accord with standards ISO 7148, ASTM G99-95a, ASTM G 133-95 under different conditions of normal applied load (3, 6 and 10 N) and sliding speed (1, 15 and 25 mm.s-1), and as a counter pair we used the ball of 100C 6, 10 mm of diameter. The surface morphology of the titanium alloys has been characterized by SEM, EDAX, micro hardness, roughness analysis measurements. The behavior observed for both samples suggests that the wear and friction mechanism during the test is the same for Ti alloys, and to increase resistance to wear and friction of biomedical titanium alloys used in total hip prosthesis (femoral stems) the surface coating and treatment are required.

Share and Cite:

M. Fellah, O. Assala, M. Labaïz, L. Dekhil and A. Iost, "Friction and Wear Behavior of Ti-6Al-7Nb Biomaterial Alloy," Journal of Biomaterials and Nanobiotechnology, Vol. 4 No. 4, 2013, pp. 374-384. doi: 10.4236/jbnb.2013.44047.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] M. Niinomi, “Mechanical Biocompatibilities of Titanium Alloys for Biomedical Application,” Journal of the Mechanical Behavior of Biomedical Materials, Vol. 1, No. 1, 2008, pp. 30-42.
[2] L. E. Murr, S. A. Quinones, S. M. Gaytan, M. I. Lopez, A. Rodela, et al., “Microstructure and Mechanical Behaviour of Ti-6Al-4V Produced by Rapid-Layer Manufacturing, for Biomedical Applications,” Journal of the Mechanical Behavior of Biomedical Materials, Vol. 2, No. 1, 2009, pp. 20-32.
[3] Z.-B. Caia, G.-A. Zhangb, Y.-K. Zhua, et al., “Torsional Fretting Wear of a Biomedical Ti6Al7Nb Alloy for Nitrogen Ion Implantation in Bovine Serum,” Tribology International, Vol. 59, 2013, pp. 312-320.
[4] N. Masahashi, Y. Mizukoshi, S. Semboshi, K. Ohmura, S. Hanada, et al., “Photo-Induced Properties of Anodicoxidelms on Ti6Al4V,” Journal of Thin Solid Films, Vol. 520, No. 15, 2012, pp. 4956-4964.
[5] M. Janecek, F. Novy, J. Strásky, P. Harcuba and L. Wagner, “Fatigue Endurance of Ti-6Al-4V Alloy with Electro-Eroded Surface for Improved Bone In-Growth,” Journal of the Mechanical Behavior of Biomedical Materials, Vol. 4, No. 3, 2011, pp. 417-422.
[6] J. Chenga, J. Yanga, X. Zhang, H. Zhong, J. Ma, et al., “High Temperature Tribological Behaviour of a Ti-46Al2Cr-2Nb Intermetallics,” Intermetallics, Vol. 31, 2012, pp. 120-126.
[7] L. Bolzoni, E. M. Ruiz Navas, E. Neubauer and E. Gordo, “Mechanical Properties and Micro Structural Evolution of Vacuum Hot-Pressed Titanium and Ti-6Al-7Nb Alloy,” Journal of the Mechanical Behaviour of Biomedical Materials, Vol. 9, 2012, pp. 91-99.
[8] K. Ida, Y. Tani, S. Tsutsumi, T. Togaya, T. Nambu, et al., “Clinical Application of Pure Titanium Crowns,” Journal of Dental Materials, Vol. 4, No. 2, 1985, pp. 191-195.
[9] B. Bergman, C. Bessing, G. Ericson, P. Lundquist, H. Nilson, et al., “A 2-Year Follow-Up Study of Titanium Crowns,” Acta Odontologica Scandinavica, Vol. 48, No. 2, 2011, pp. 113-117.
[10] T. Hirata, T. Nakamura, F. Takashima, T. Maruyama, M. Taira, et al., “Studies on Polishing of Ag-Pd-Cu-Au Alloy with Five Dental Abrasives,” Journal of Oral Rehabilitation, Vol. 28, No. 8, 2011, pp. 773-777.
[11] T. Kawazoe and K. Suese, “Clinical Application of Titanium Crowns,” Dental Materials Journal, Vol. 30, No. 3, 1989, pp. 317-328.
[12] A. Kuroiwa and Y. Igarashi, “Application of Pure Titanium to Metal Framework,” Nihon Hotetsu Shika Gakkai Zasshi, Vol. 42, No. 4, 1998, pp. 547-558.
[13] M. A. Khan, R. L. Williams and D. F. Williams, “In-Vitro Corrosion and Wear of Titanium Alloys in the Biological Environment,” Biomaterials, Vol. 17, No. 22, 1996, pp. 2117-2126.
[14] S. Tamilselvi, R. Murugaraj and N. Rajendran, “Electrochemical Impedance Spectroscopic Studies of Titanium and Its Alloys in Saline Medium,” Material and Corrosion, Vol. 58, No. 2, 2007, pp. 113-119.
[15] S. Tamilselvi and N. Rajendran, “In Vitro Corrosion Behavior of Ti-5Al-2Nb-1Ta Alloy in Hanks Solution,” Materials and Corrosion, Vol. 58, No. 4, 2007, pp. 285-289.
[16] A. Guitar, G. Vigna and M. I. Luppo, “Microstructure and Tensile Properties after Thermo Hydrogen Processing of Ti-6Al-4V,” Journal of Mechanical Behavior of Biomedical Materials, Vol. 2, No. 2, 2009, pp. 156-163.
[17] C. R. Ramos-Saenz, F. A. Sundaram and N. DiffootCarlo, “Tribological Properties of Ti-Based Alloys in Simulated Bone Implant Interface with Ringer’s Solution at Fretting Contacts,” Journal of Mechanical Behavior of Biomedical Materials, Vol. 3, No. 8, 2010, pp. 549-558.
[18] R. C. Browne, “Vanadium Poisoning from Gas Turbines,” British Journal of Industrial Medicine, Vol. 2, No. 12, 1955, pp. 57-59.
[19] S.-G. Sjoberg, “Vanadium Dust, Chronic Bronchitis and Possible Risk of Emphysema: A Follow-Up Investigation of Workers at a Vanadium Factory,” Journal of Internal Medicine, Vol. 154, No. 5, 1956, pp. 381-386.
[20] P. G. Laing, “Clinical Experience with Prosthetic Materials: Historical Perspectives, Current Problems and Future Directions. Corrosion and Degradation of Implant Materials,” ASTM-STP 684, B. C. Syrett and A. Acharya, Eds., American Society for Testing and Materials, 1979, pp. 199-211.
[21] M. Geetha, A. K. Singh, R. Asokamini and A. K. Gogia, “Ti Based Biomaterials, the Ultimate Choice for Orthopaedic Implants—A Review,” Progress in Materials Science, Vol. 54, No. 3, 2009, pp. 397-425.
[22] G. B. Van der Volt, E. Marani, S. Tio and F. A. De Wolff, “Aluminum Neurotoxicity,” In: W. Graumann and J. Drukker, Eds., “Histo-and Cyto-Chemistry as a Tool in Environmental,” Toxicology, Fisher, Stuttgart, Germany, 1991, pp. 235-242.
[23] D. R. C. McLachlan, G. Farnees and I. T. Galin, “Biological Aspects of Metals and Metal Related Diseases,” Ravan Press, New York, 1983.
[24] D. Scharnweber, “Degradation (in Vitro-in Vivo Corrosion),” In: J. A. Helsen and H. Jürgen Breme, Eds., Metals as Biomaterials, John Willey & Sons, London, 1998, pp. 101-151.
[25] M. F. Lopez, L. Soriano, F. J. Palomares, M. Sanchez-Agudo, G. G. Fuentes, et al., “Soft X-Ray Absorption Spectroscopy Study of Passive and Oxide Layers of Titanium Alloys,” Surface and Interface Analysis, Vol. 33, No. 7, 2002, pp. 570-579.
[26] C. Morand, M. F. Lopez, A. Gutierrez and J. A. Jimenez, “AFM and SEM Characterization of Non-Toxic Vanadium-Free Ti Alloys Used as Biomaterials,” Applied Surface Science, Vol. 220, No. 1-4, 2003, pp. 79-87.
[27] M. F. Lopez, J. A. Jimenez and A. Gutierrez, “Corrosion Study of Surface-Modified Vanadium-Free Titanium Alloys,” Electrochimica Acta, Vol. 48, No. 10, 2003, pp. 1395-1401.
[28] M. F. Semlitsch, H. Weber and R. M. Streicher, “Joint Replacement Components Made of Hot-Forged and Surface-Treated Ti-6Al-7Nb Alloy,” Biomaterials, Vol. 13, No. 11, 1992, pp. 781-888.
[29] E. Kobayashi, T. J. Wang, H. Doi, T. Yoneyama and H. Hamanaka, “Mechanical Properties and Corrosion Resistance of Ti-6Al-7Nb Alloy Dental Castings,” Journal of Materials Science: Materials in Medicine, Vol. 9, No. 10, 1998, pp. 567-574.
[30] E. Confortoa, B.-O. Aronssonb, A. Salitoc, C. Crestoud and D. Caillard, “Rough Surfaces of Titanium and Titanium Alloys for Implants and Prostheses,” Materials Science and Engineering C: Biomimetic and Supramolecular systems, Vol. 24, No. 5, 2004, pp. 611-618.
[31] Brahim TLILI, “Caractérisation de Films durs Multicouches Elaborés par Pulvérisation Magnétron. Influence des Conditions d’élaboration sur Leurs Propriété,” Le 9 Décembre 2010 école Doctorale No. 432: Sciences des Métiers de l’Ingénieur Doctorat ParisTech Pastel-00573968, Version 1-6, 2011.
[32] Norme Internationale (F) Implants Chirurgicaux—Prothèses Partielles et Totales de l’Articulation de la Hanche—Partie 2, ISO 7206-2, Surfaces Articulaires Constituées de Matériaux Métalliques, Céramiques et Plastiques, 1996.
[33] J. F. Archard, “Contact and Rubbing of Flat Surfaces,” Journal of Applied Physics, Vol. 24, No. 8, 1953, pp. 981-988.
[34] L. Avril, “Elaboration de Revêtements sur Acier Inoxydable Simulation de la Fusion par Irradiation Laser Caractérisation Structurale, Mécanique et Tribologique,” Thèse, Ecole Nationale Superieure (432), n° d’ordre 2003-16.
[35] H. Paetzold and E. Ilinich, “Determination of the Dynamic Friction Coefficient of Cartilage with Different Biomaterials,” Journal of Biomechanics, Vol. 41, No. S1, 2008.

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.