Motor and molecular analysis to detect the early symptoms in a mouse amyotrophic lateral sclerosis model


The amyotrophic lateral sclerosis (ALS) is a progressive and fatal neurodegenerative disorder primarily involving motoneurons in the cerebral cortex, brainstem, and spinal cord. SOD1-G93A mice, which express multiple copies of the mutant form of the human Cu/Zn SOD, are one of the most widely used animal models for ALS pathology. However, the onset of the disease can vary between animals of 1-2 weeks while the progression is quite fast. In order to evaluate the efficacy of any treatment, it is very important to treat all animals at the early onset of the disease, instead of at a fixed age-point. To this aim, we performed behavioral analysis and measured hSOD1 mRNA expression to identify the appearance of the first motor deficits. Rotarod and PaGE tests revealed to be the most sensitive approaches to detect the beginning of the symptomatic phase of the disease, while neurological score and weight monitoring showed significant differences only at later stages in ALS pathology. Furthermore, we found a better correlation between hSOD1 mRNA expression with disease onset than with a transgene copy number. Therefore, the association of behavioral tests and molecular analysis represents a sensible and accurate tool to early detect the murine symptoms.

Share and Cite:

Valsecchi, V. , Boido, M. , Piras, A. , Spigolon, G. and Vercelli, A. (2013) Motor and molecular analysis to detect the early symptoms in a mouse amyotrophic lateral sclerosis model. Health, 5, 1712-1718. doi: 10.4236/health.2013.510231.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Siddique, T., Figlewicz, D.A., Pericak-Vance, M.A., Haines, J.L., Rouleau, G., Jeffers, A.J., Sapp, P., Hung, W.Y., Bebout, J., McKenna-Yasek, D. et al. (1991) Linkage of a gene causing familial amyotrophic lateral sclerosis to chromosome 21 and evidence of genetic-locus heterogeneity. The New England Journal of Medicine, 324, 1381-1384.
[2] Rosen, D.R., Siddique, T., Patterson, D., Figlewicz, D.A., Sapp, P., Hentati, A., Donaldson, D., Goto J., O’Regan, J.P., Deng, H.X., et al. (1993) Mutation in Cu/Zn superoxide dismutase gene are associated with familial amyothrophic lateral sclerosis. Nature, 362, 59-62.
[3] Tainer, J.A., Getzoff, E.D., Beem, K.M., Richardson, J.S. and Richardson, D.C. (1982) Determination and analysis of the 2 A-structure of copper, zinc superoxide dismutase. Journal of Molecular Biology, 160, 181-217.
[4] Scozzafava, A. and Viezzoli, M.S. (1993) The role of the active site amino acid residues on the catalytic activity of Cu2Zn2SOD. Molecular and Chemical Neuropathology, 19, 193-204.
[5] Ince, P.G., Highley, J.R., Kirby, J., Wharton, S.B., Takahashi, H., Strong, M.J. and Shaw, P.J. (2011) Molecular pathology and genetic advances in amyotrophic lateral sclerosis: An emerging molecular pathway and the significance of glial pathology. Acta Neuropathologica, 122, 657-671.
[6] Al-Chalabi, A., Jones, A., Troakes, C., King, A., Al-Sarraj, S. and van den Berg, L.H. (2012) The genetics and neuropathology of amyotrophic lateral sclerosis. Acta Neuropathologica, 124, 339-352.
[7] Majounie, E., Renton, A.E., Mok, K., Dopper, E.G., Waite, A., Rollinson, S., Chiò, A., Restagno, G., Nicolaou, N., Simon-Sanchez, J. et al. (2012) Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: A cross-sectional study. The Lancet Neurology, 11, 323-330.
[8] Boido, M., Buschini, E., Piras, A., Spigolon, G., Valsecchi, V., Mazzini, L. and Vercelli, A. (2012) Advantages and pitfalls in experimental models of ALS. In: Maurer M.H., Ed., Amyotrophic Lateral Sclerosis, Chapter 5, InTech, 125-140.
[9] Gurney, M.E., Pu, H., Chiu, A.Y., Dal Canto, M.C., Polchow, C.Y., Alexander, D.D., Caliendo, J., Hentati, A., Kwon, Y.W., Deng, H.X., Chen, W., Zhai, P., Sufit, R.L. and Siddique, T. (1994) Motor neuron degeneration in mice that express a human Cu, Zn superoxide dismutase. Science, 264, 1772-1775.
[10] Chiu, A.Y., Zhai, P., Dal Canto, M.C., Peters, T.M., Kwon, Y.W., Prattis, S.M. and Gurney, M.E., (1995) Age-dependent penetrance of disease in a transgenic mouse model of familial amyotrophic lateral sclerosis. Molecular and Cellular Neuroscience, 6, 349-362.
[11] Dal Canto, M.C. and Gurney, M.E. (1997) A low expressor line of transgenic mice carrying a mutant human Cu, Zn superoxide dismutase (SOD1) gene develops pathological changes that most closely resemble those in human amyotrophic lateral sclerosis. Acta Neuropathologica, 93, 537-550.
[12] Pasinelli, P., Brown, R.H. (2006) Molecular biology of amyotrophic lateral sclerosis: Insights from genetics. Nature Reviews Neuroscience, 7, 710-723.
[13] Hirano, A., Donnenfeld, H., Sasaki, S. and Nakano, I. (1984) Fine structural observations of neurofilamentous changes in amyotrophic lateral sclerosis. Journal of Neuropathology & Experimental Neurology, 43, 461-470.
[14] Shaw, B.F. and Valentine, J.S. (2007) How do ALS-associated mutations in superoxide dismutase 1 promote aggregation of the protein? Trends in Biochemical Sciences, 32, 78-85.
[15] Kato, S., Saeki, Y., Aoki, M., Nagai, M., Ishigaki, A., Itoyama, Y., Kato, M., Asayama, K., Awaya, A., Hirano, A. and Ohama, E. (2004) Histological evidence of redox system breakdown caused by superoxide dismutase 1 (SOD1) aggregation is common to SOD1-mutated motor neurons in humans and animal models. Acta Neuropathologica, 107, 149-158.
[16] Schwartz, A.L. and Ciechanover, A. (1999) The ubiquitinproteasome pathway and pathogenesis of human diseases. Annual Review of Medicine, 50, 57-74.
[17] Ström, A.L., Gal, J., Shi, P., Kasarskis, E.J., Hayward, L.J. and Zhu, H. (2008) Retrograde axonal transport and motor neuron disease. Journal of Neurochemistry, 106, 495-505.
[18] Zhang, F., Ström, A.L., Fukada, K., Lee, S., Hayward, L.J. and Zhu, H. (2007) Interaction between familial amyotrophic lateral sclerosis (ALS)-linked SOD1 mutants and the dynein complex. The Journal of Biological Chemistry, 282, 16691-16699.
[19] Hirano, A. (1991) Cytopathology of amyotrophic lateral sclerosis. Advances in Neurology, 56, 91-101.
[20] Alexander, G.M., Erwin, K.L., Byers, N., Deitch, J.S., Augelli, B.J., Blankenhorn, E.P. and Heiman-Patterson, T.D. (2004) Effect of transgene copy number on survival in the G93A SOD1 transgenic mouse model of ALS. Molecular Brain Research, 130, 7-15.
[21] Zinman, L., Liu, H.N., Sato, C., Wakutani, Y., Marvelle, A.F., Moreno, D., Morrison, K.E., Mohlke, K.L., Bilbao, J., Robertson, J. and Rogaeva, E. (2009) A mechanism for low penetrance in an ALS family with a novel SOD1 deletion. Neurology, 72, 1153-1159.
[22] Weydt, P., Hong, S.Y., Kliot, M. and Möller, T. (2003) Assessing disease onset and progression in the SOD1 mouse model of ALS. Neuroreport, 23, 1051-1054.
[23] Vercelli, A., Mereuta, O.M., Garbossa, D., Muraca, G., Mareschi, K., Rustichelli, D., Ferrero, I., Mazzini, L., Madon, E. and Fagioli, F. (2008) Human mesenchymal stem cell transplantation extends survival, improves motor performance and decreases neuroinflammation in mouse model of amyotrophic lateral sclerosis. Neurobiology of Disease, 31, 395-405.
[24] Dal Canto, M.C., Gurney, M.E. (1994) Development of central nervous system pathology in a murine transgenic model of human amyotrophic lateral sclerosis. American Journal of Pathology, 145, 1271-1279.
[25] Gurney, M.E. (1997) The use of transgenic mouse models of amyotrophic lateral sclerosis in preclinical drug studies. Journal of the Neurological Sciences, 152, S67-S73.
[26] Mead, R.J., Bennett, E.J., Kennerley, A.J., Sharp, P., Sunyach, C., Kasher, P., Berwick, J., Pettmann, B., Battaglia, G., Azzouz, M., Grierson, A. and Shaw, P.J. (2011) Optimised and rapid pre-clinical screening in the SOD1 (G93A) transgenic mouse model of amyotrophic lateral sclerosis (ALS). PLoS One, 6, Article ID: E23244.
[27] Choi, C.I., Lee, Y.D., Gwag, B.J., Cho, S.I., Kim, S.S. and Suh-Kim, H. (2008) Effects of estrogen on lifespan and motor functions in female hSOD1 G93A transgenic mice. Journal of the Neurological Sciences, 268, 40-47.
[28] Ikeda, R., Kurokawa, M.S., Chiba, S., Yoshikawa, H., Ide, M., Tadokoro, M., Nito, S., Nakatsuji, N., Kondoh, Y., Nagata, K., Hashimoto, T. and Suzuki, N. (2005) Transplantation of neural cells derived from retinoic acid-treated cynomolgus monkey embryonic stem cells successfully improved motor function of hemiplegic mice with experimental brain injury. Neurobiology of Disease, 20, 38-48.
[29] Knippenberg, S., Thau, N., Dengler, R. and Petri, S. (2010) Significance of behavioural tests in a transgenic mouse model of amyotrophic lateral sclerosis (ALS). Behavioural Brain Research, 213, 82-87.
[30] Durand, J., Amendola, J. and Bories, C. (2006) Lamotte d’Incamps B. Early abnormalities in transgenic mouse models of amyotrophic lateral sclerosis. Journal of Physiology—Paris, 99, 211-220.
[31] Mancuso, R., Oliván, S., Osta, R. and Navarro, X. (2011) Evolution of gait abnormalities in SOD1 (G93A) transgenic mice. Brain Research, 1406, 65-73.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.