Control of the Atomic Ionization with Short and Intense Chirped Laser Pulses

DOI: 10.4236/jmp.2013.410A1003   PDF   HTML   XML   3,586 Downloads   5,266 Views   Citations


We investigate a two-photon ionization process in a real hydrogen atom by short and intense chirped laser pulses. Our simulation of the laser-atom interaction consists on numerically solving the three-dimensional time-dependent Schrodinger equation with a spectral method. The unperturbed wave functions and electronic energies of the atomic system were found by using an accurate L2 discretisation technique based on the expansion of the wave functions on B-spline functions. We show the efficiency of chirped laser pulses to control the ionization yield and the transfer of the population to the 2p bound state involved in the ionization path.

Share and Cite:

S. Barmaki, S. Hennani and S. Laulan, "Control of the Atomic Ionization with Short and Intense Chirped Laser Pulses," Journal of Modern Physics, Vol. 4 No. 10A, 2013, pp. 27-31. doi: 10.4236/jmp.2013.410A1003.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] J. C. Diels and W. Rudolph, “Ultrashort Laser Pulse Phenomenon: Fundamentals, Techniques and Applications on Femtosecond Time Scale,” Academic Press, New York, 1996.
[2] P. Agostini and L. F. DiMauro, Reports on Progress in Physics, Vol. 67, 2004, pp. 813-855.
[3] K. Yamanouchi, S. L. Chin, P. Agostini and G. Ferrante, “Progress in Ultrafast Intense Laser Science III,” Springer-Verlag, New York, 2007.
[4] J. Xu, Physical Review A, Vol. 83, 2011, Article ID: 033823.
[5] X. Feng, S. Gilbertson, H. Mashiko, H. Wang, S. D. Khan, M. Chini, Y. Wu, K. Zhao and Z. Chang, Physical Review Letters, Vol. 103, 2009, Article ID: 183901.
[6] F. Krauz and M. Ivanov, Review of Modern Physics, Vol. 81, 2009, p. 163.
[7] F. Grossman, “Theoretical Femtosecond Physics: Atoms and Molecules in Strong Fields,” Springer-Verlag, New York, 2008.
[8] A. D. Bandrauk, S. Barmaki and G. Lagmago Kamta, Physical Review Letters, Vol. 98, 2007, Article ID: 013001.
[9] G. L. Kamta and A. D. Bandrauk, Physical Review Letters, Vol. 94, 2005, Article ID: 203003.
[10] S. Laulan, J. Haché, H. S. Ba and S. Barmaki, Journal of Modern Physics, 2013, in Press.
[11] V. Prasad, B. Dahija and K. Yamashita, Physica Scripta, Vol. 82, 2010, Article ID: 055302.
[12] J. Wu, G. T. Zhang, C. L. Xia and X. S. Liu, Physical Review A, Vol. 82, 2010, Article ID: 013411.
[13] T. Nakajima, Physical Review A, Vol. 75, 2007, Article ID: 053409.
[14] Y. Xiang, Y. Niu and S. Gong, Physical Review A, Vol. 80, 2009, Article ID: 023423.
[15] J. Cao, C. J. Barden and K. R. Wilson, Journal of Chemical Physics, Vol. 113, 2000, pp. 1898-1909.
[16] K. J. Schafer and K. C. Kulander, Laser Physics, Vol. 7, 1997, pp. 740-750.
[17] R. Marani and E. J. Robinson, Journal of Physics B, Vol. 32, 1999, pp. 711-736.
[18] J. Lambert, M. W. Noel and T. F. Gallagher, Physical Review A, Vol. 66, 2002, Article ID: 053413.
[19] C. W. S. Conover, M. C. Doogue and F. J. Struwe, Physical Review A, Vol. 65, 2002, Article ID: 033414.
[20] R. B. Vrijen, D. I. Duncan and L. D. Noordam, Physical Review A, Vol. 56, 1997, pp. 2205-2212.
[21] C. de Boor, “A Practical Guide to Splines,” Springer-Verlag, New York, 1978.
[22] H. Bachau, E. Cormier, P. Decleva, J. E. Hansen and F. Martin, Reports on Progress in Physics, Vol. 64, 2001, pp. 1815-1943.
[23] S. Barmaki, H. Bachau and M. Ghalim, Physical Review A, Vol. 69, 2004, Article ID: 043403.
[24] S. Laulan and H. Bachau, Physical Review A, Vol. 68, 2003, Article ID: 013409.
[25] S. Laulan and H. Bachau, Physical Review A, Vol. 69, 2004, Article ID: 033408.
[26] B. E. A. Saley and M. C. Teich, “Fundamendals of Photonics,” John Wiley and Sons Inc., Hoboken, 2007.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.